
1 

 

Control and Navigation 3 
Cornerstone Electronics Technology and Robotics III 

(Notes primarily from “Underwater Robotics – Science Design and Fabrication”, an excellent book for 
the design, fabrication, and operation of Remotely Operated Vehicles ROVs) 

 

 Administration: 
o Prayer 

 Advanced Control Options: 
o Disadvantages of High-Tech Control Systems: 

 The cost and time commitment for a high-tech control system can be open 
ended.  Be realistic with your financial and time budget before over 
committing to a control technology. 

 As the complexity of the control system increases, the number of possible 
breakdowns increases. 

 When an automated feedback control system fails, the results can be 
devastating.  See: http://www.youtube.com/watch?v=5hfs3vpZO2s or 

o Benefits of High-Tech Control Systems: 
 Fully automated control systems may be a mission requirement. 
 The mission objectives may necessitate more than just “Forward-Off-

Reverse” control; a more advanced control system can adjust the intensity, 
speed, or force of a device. 

 A high-tech control system can make the operation of an apparatus more 
intuitive for the operator. 

 Automating simple onboard tasks frees the operator to focus on more 
intricate duties. 

 By incorporating high-tech systems on the vehicle, you learn skills and 
technological knowledge that can be applied in future projects and career 
advancement. 

 Improvements can be added in steps as you gain experience with technology. 
o Possibilities for Control Systems: Figure 1 illustrates some possibilities for an 

advanced control system. 
 

 
 

Figure 1: One Possible Advanced Control System 



2 

 

o Microcontrollers: 
 A microcontroller (MCU) is a digital integrated circuit that can be 

programmed to control electrical or electronic devices. 
 A microcontroller in essence is a tiny, cheap, stand-alone mini-computer on 

a single chip (no monitor, keyboard, or mouse) that is suited for controlling 
electrical/electronic applications. 
 

     
    

Figure 2: 18-Pin PIC16F88 Microcontroller   Figure 3: 40-Pin PIC16F877A Microcontroller 
 

 A microcontroller can monitor multiple sensors, activate warning devices, 
send signals to visual displays, communicate with other microcontrollers, 
send multiple commands over a single pair of wires, make decisions, and 
control multiple output devices. 

 Microcontrollers contain the following on the same microchip: 
 A central processing unit (CPU) 
 Memory (both ROM, read-only memory, and RAM, random-access 

memory 
o ROM type memory is used to store the program code. 
o RAM is used for data storage, stack management tasks, and 

register stacks. 
 Some digital input and output ports (I/O ports) 

o The digital I/O ports are the means by which the 
microcontroller interfaces with the environment. 

 Microcontrollers will also contain other devices: 
 Timers 
 Serial and parallel ports to allow data transmission to other devices 
 Analog-to-digital converters (ADC)  
 Digital-to-analog converters (DAC) 

 All the components on the microcontroller are located on a single piece of 
silicon.  



3 

 

 Programming a microcontroller means that the programmer inputs a set of 
commands into the microcontroller that are executed when the 
microcontroller is turned on. 

 Levels of Programming Languages: 
o MCUs are programmed in machine language code (binary 

code) which looks like: 
 

0000100001001001 
0001100000000011 
0111100000000111 

 
 Machine language code is the native language for PIC 

MCUs. 
o Assembly level code makes programming commands more 

recognizable; however, it forces the programmer to deal with 
the MCUs internal structure.  Assembly code looks like: 

 
movlw  h’07’ 
addwf  INDF, w 
btfsc  STATUS,C 

  
 Another difficulty with assembly-level code is that each 

line of machine code must have a line of assembly 
code written 

o High-level language:  A programmer needs a programming 
language that relates to problem solving more than the internal 
structure of a microcontroller.  High level computer languages 
offer formats close to English language.   The purpose of 
developing high level languages is to enable people to write 
programs easily and in their own native language environment 
(English). 
 MeLabs PicBasic Pro code appears like: 

 
     For c = 1 TO 100   ‘ Count from 1 to 100  
     SOUND 1, [75,100]   ‘ Generate tone on pin 1    
     Pause 20    ‘ Delay 20 milliseconds  
     Next       ‘ Return to FOR and add 1 to c 
     

 The most common high-level language for 
programming MCUs is C.   
 



4 

 

 Programming the microcontroller unit (MCU) can be programmed 
either by removing the microcontroller from the circuit and 
programming it in an adapter or by programming the microcontroller 
while it is still in the circuit (In-Circuit Serial Programming).  See 
Figures 4 and 5. 

 

     

 Figure 4: Programming an Microcontroller      Figure 5: In-Circuit Serial Programming  
             With an Adapter              (ICSP) 
 

 Flash devices which can be reprogrammed, e.g. PIC16F88. 
o Program memory can be erased and rewritten 100,000 times. 
o Data stored in the EEPROM can be erased and rewritten 

1,000,000 times. 
o Data stored in the EEPROM will be retained over 40 years. 

 One Time Programmable (OTP) microcontrollers can only be 
programmed once. 

 For additional programs in PicBasic Pro, see: 
http://cornerstonerobotics.org/picbasic.php 

 For a curriculum based upon PicBasic Pro, see Lesson 11 through 
Lesson 36 at:  http://cornerstonerobotics.org/curriculumyear2.php  

 Microcontroller Pin Functions: 
 Each pin on a microcontroller has a particular purpose.  The 

datasheet for the microcontroller will provide a description for use(s) 
or function(s) for each pin. 

 Many pins have multiple functions.  For example, Pin #6 on the 
Microchip Technologies PIC16F88 can functions as a bidirectional 
input/output pin (RB0), an external interrupt pin (INT), or Capture 
input Capture output PWM output pin (CCP1).  Refer to the particular 
microcontroller datasheet to configure the different functions offered 
by each pin.   



5 

 

 Although pin functions differ from one microcontroller to the next, 
there are some universal features found on most microcontrollers.  
For example, the two microcontrollers below are made by two 
different manufacturers, Atmel and Microchip Technologies.  
However, they both have pins that perform the same function. 

o The VCC and GND pins (in red) connect the MCU to power. 
o Both MCUs have a RESET or Master Clear (MCLR) pins (in 

green) to reset in case there is an operational glitch. 
o Each microcontroller is equipped with two pins (in blue) to 

connect to a crystal or oscillator circuit that supplies timing 
pulses to the MCU. 

o Both microcontrollers have a USART (Universal 
Synchronous/Asynchronous Receiver/Transmitter) pins (in 
orange) for data transmission. 

o Many MCUs include pins (in purple) that feature analog-to-
digital conversion. 

 

 
 

Figure 6: Common Functions on Two Different Microcontrollers 
 

 Most of the pins on a microcontroller are general purpose 
input/output (I/O) pins.  These pins enable the MCU to relate to its 
environment. Input pins are connected to external sensors or 
communicate with other devices and receive data from them.  Output 
pins are connected to and control external actuators (like dc motors) 
or other devices.  Typically, I/O pins are at one of two logic states. 
Logic circuits in general are designed to input and output only two 
types of signals: "high" (1) and "low" (0), as represented by +3 volts 
or +5 volts (depending upon the microcontroller) for a "high" state 
and zero volts for a "low" state. 



6 

 

 A Microcontroller Pin Configured as an Input Pin:   
o A microcontroller input pin monitors its voltage level and the 

microcontroller can make decisions based upon that input pin 
voltage.   

o For example, in the following schematic and program, the 
microcontroller monitors the input pin’s voltage and then 
decides which LED to light. The PIC16F88 monitors the input 
pin RB0 which is connected to switch S1 and a 10K pull-down 
resistor.  If the switch S1 is pressed, the input Pin RB0 will be 
forced to +5 volts (RB0 = 1) and LED1 will light and LED2 will 
be off.  When switch S1 is released, RB0 is pulled down to 0 
volts by the 10K pull-down resistor (RB0 = 0).  LED2 will now 
light and LED1 will turn off.   

 
 

 
 

 

Figure 7: Microcontroller Controlled by Input Pin RB0 and the Corresponding Program 
 

 A Microcontroller Pin Configured as an Output Pin:  
o An output pin sends out either a high or low state that controls 

a device or another microcontroller.   
o In the example in Figure 7, the two output pins RB1 and RB2 

control the LEDs connected to them by causing the pin to go 
to +5 volts or 0 volts. 

o The output pin can also send a series of ON and OFF pulses 
to send data or commands. 

 

 
 

Figure 8: A Data Stream of ON/OFF Pulses 

Program in “Pseudocode”: 
 

    start: 
IF RB0 = 1 THEN ‘If RB0 = +5V 

HIGH RB1 ‘RB1 +5V 
LOW RB2 ‘RB2 0V 
PAUSE 100 ‘Hold 100ms 

 ELSE   ‘If RB0 = 0 
  HIGH RB2 ‘RB2 +5V 
  LOW RB1 ‘RB1 0V 
  PAUSE 100 ‘Hold 100ms 
 ENDIF 
 GOTO start 
 END 



7 

 

 
 Microcontroller Limitations: 

o MCUs have limited speed and memory.  This inadequacy is 
normally not a problem for entry level ROVs.  

o Their power output is minimal, normally around 20 mA at 3 – 5 
volts.  This limitation can be overcome with the use of transistors 
which amplify the microcontroller output to drive higher powered 
devices. 

o  Introduction to Electronic Signals and Communication: 
 To be effective, a microcontroller must communicate with devices 

connected to it.  For this to happen, two features must be present: 
 First, a medium, such as electricity, light, radio waves, or sound must 

be available for use in the propagation of energy from one device to 
another. 

 Second, there must be a standard language (communication 
protocol) that the devices use to communicate encoded messages. 

 For example, Figure 9 below pictures the PIC16F88 microcontroller 
on the right sending an electronic (the medium) asynchronous serial 
communication protocol signal (the language) to the fiber-optic 
transmitter.  The transmitter converts the electronic signal to light 
pulses (a change in medium) which are sent through the fiber-optic 
cable to the fiber-optic receiver.  The fiber-optic receiver converts the 
light pulses back into an electronic signal which is sent to the 
PIC16F88 on the left.  This microcontroller then uses this signal to 
control the motor speed. 

 

 
 

Figure 9: Using Light to Communicate PWM Signals from a Microcontroller 
 

 As the distance between the source of a signal and its destination 
increases, accurate data transmission becomes increasingly difficult. 
Electrical distortion can enter the signal. 



8 

 

 Analog vs. Digital Signals: 
 A signal is a fluctuating quantity or impulse whose variations 

represent information. The amplitude or frequency of voltage, current, 
electric field strength, light, and sound can be varied as signals 
representing information. 

 Analog signals: 
o A signal of continuous change without interruption. 
o Example:  Potentiometer to control an LED 

 

 
 

Figure 10: Analog Signal 
 

 Digital Signals: 
o A signal that has discrete values. 
o Example:  Digital thermometer or digital multimeter 

 
 

 
 

Figure 11: Digital Signal 
 

 Digital communications is normally favored over analog 
communications since the digital signal is very uniform and noise is 
less likely to severely alter its shape or amplitude. 

o Analog Data Transmission: 
 Useful for transmitting signals from analog sensors 
 The simplest way to send an analog signal is to use an analog voltage. 

 The voltage signal suffers degradation over distance since the 
resistance of the wire creates a voltage drop which increases with 
distance.  Measuring current rather than voltage is a preferred 
method since the current does not decrease with distance.  

 A voltage analog signal is also prone to interference from other 
electronics circuits close by and radio frequency waves. 



9 

 

 Another method to transmit analog signals is to use high-frequency 
oscillations, then modulate the amplitude (magnitude) or the frequency 
(cycles per second) of the oscillations.  This is the technique used to send 
AM and FM radio signals. 

 

 
Figure 12: Amplitude and Frequency Modulation 

 From:  http://iitg.vlab.co.in/?sub=59&brch=163&sim=261&cnt=474 
 

 Methods of Protecting Analog Signals from Noise Interference: 
 Coaxial Cable:  The foil or wire mesh surrounding the center 

conductor is connected to ground.  It partially shields the analog 
signal that is sent in the center conductor from outside interference. 

 

  
 
        Figure 13: Coaxial Cable         Figure 14: Twisted Pair 
 

 Twisted Pair Wire:   
o The fact that the wires are twisted around each other is 

significant. This tends to cause external interference to act on 
one of the wires in a pair in such a way as to cancel the 
interference acting on the other wire. This is because the wires 
twisted around each other occupy almost exactly the same 
space and the current travels in the two wires in opposite 
directions.  The twisted pair is coupled with a differential 
system to clear up the signal.  



10 

 

 
o With the differential system each signal is transmitted on two 

lines at the same time. On one, the signal is transmitted as a 
POSITIVE (+) signal, on the other as a NEGATIVE (-) signal. 
At the receiving end of the cable the receiver device gets two 
signals. Both of them however, have been changed by the 
noise that penetrated the cable. The changes came in the 
form of unwanted voltage added to the wanted signal. At this 
point it is important to note that the unwanted voltage got 
added to both lines at the same time and by the same amount. 
The essence of the DIFFERENTIAL system is that the 
receiver is designed to take the difference between the two 
signals on the two lines. In doing that, the noise part of the 
signal, equal on both lines, gets eliminated, and what remains 
is clear signal. 
 
As indicated above, the DIFFERENTIAL system works well if 
the noise added is equal on the two lines, i.e. the POSITIVE 
(+) and the NEGATIVE (-). To ensure that the noise hits both 
of these lines identically, both of them need to occupy 
theoretically the same physical space. Practically, the closest 
we can get to this requirement is to have the two lines 
TWISTED together tightly.  See: 
http://www.connectworld.net/twisted-pair-cables.html 

o There are two types of twisted pair cables, shielded (STP) and 
unshielded (UTP). 

o Video demonstrating benefits of twisted pair cable: 
http://www.youtube.com/watch?v=ed0atAyyfF4&feature=result
s_video&playnext=1&list=PL4734FEF95BA36B69  

 4-20 mA Protocol: 
o Current signals are less susceptible to electrical interference 

than voltage signals. 
o The 4-20mA current loop signaling protocol has been with us 

for many years, and despite all the digital advances remains 
popular. The signal is transmitted via a 4-20 mA current loop 
from the sensor device to the control system. Only one 
variable can be transmitted per loop. 

o A current signal is immune to any electrical interference and 
can be transmitted over long distances. 

o If the line breaks in a 4-20mA system the current drops to zero 
raising an alarm, whereas in a 0-20mA system this cannot be 
done thus open circuit cannot be differentiated from a live 
circuit carrying minimum current. 



11 

 

 Avoid Placing Signal Wires Near High Currents: 
o Wires that conduct large and shifting currents can produce 

electro-magnetic fields that bring in electrical noise to nearby 
circuits or conductors. 

o Avoid running electrical signal wires beside these large current 
handling wires. 

o Digital Data Formats:   
 Standard codes have been established to interpret the patterns of 1s and 0s 

used in digital communications. 
 Decimal Numbering System: 

 Based upon ten fingers 
 Decimal has 10 numerals (0, 1, 2,3,4,5,6,7,8, and 9). 
 Example: 306 

When the symbols for the first digit are exhausted, the next-higher digit (to the left) is 
incremented, and counting starts over at 0. In decimal, counting proceeds like so: 

    0, 
    1,  
    2, …,7 
    8, 
    9,  
  10, (rightmost digit starts over, and the next digit to the left (in bold) is incremented) 
  11,  
  12, ... 
   ... 
  98,  
  99, (rightmost two digits start over, and next digit to the left (in bold) is incremented) 
100,  
101,  
102, ... 

After a digit reaches 9, an increment resets it to 0 but also causes an increment of the next digit 
to the left. 

 Complete Control and Navigation 3 LAB 1 – Counting in Decimal 
 Decimal numbering system is a weighted system - that is, the 

position of each digit in a decimal number is assigned a weight. 
 

Positive Powers of Ten (Whole Numbers) 

Position of Digit 
Left to Right  7 6 5 4 3 2 1 0 
Decimal Weight  107 106 105 104 103 102 101 100

Decimal Equivalent  10,000,000 1,000,000 100,000 10,000 1,000 100 10 1 

 



12 

 

o Recall that: 
 For any integer a, a0 = 1. 
 For any integer a, a1 = a. 
 104 = 10 x 10 x 10 x 10 = 10,000. 

o For whole numbers, each position is given a positive power of 
ten, e.g., 103. 

 A decimal number is the sum of the weights of each digit.  For 
example: 

 

   The decimal number 306 = (3 x 102) + (0 x 101) + (6 x 100) 
          = (3 x 100) + (0 x 10) + (6 x 1) 
          =     300     +      0       +      6 
          = 306 
 

 Binary Numbering System: 
 Introduction:  Digital electronic circuits can be in only two states: on 

or off.  This two state system is called binary and is suited for 
computers.  2-Way switches are simpler than 10-way switches. 

 The binary numbering system has only 2 different numerals (0 and 
1). 

 To distinguish a binary number from a decimal number, the prefix % 
will be added to a binary number, e.g., %1100111.   

 Each binary digit is called a bit. A group of eight bits is called a byte. 
The byte %11010111 in binary is equal to 215 in decimal. 

 Counting in Binary: 
o Binary has only 2 different numerals (0 and 1), unlike decimal 

which has 10 numerals (0,1,2,3,4,5,6,7,8, and 9). 
Counting in binary is similar to counting in any other number system. Beginning with a single 
digit, counting proceeds through each symbol, in increasing order. Decimal counting uses the 
symbols 0 through 9, while binary only uses the symbols 0 and 1.  Each 0 or 1 is a binary digit, 
or bit. 
In binary, counting is the same except that only the two symbols 0 and 1 are used. Thus after a 
digit reaches 1 in binary, an increment resets it to 0 but also causes an increment of the next 
digit to the left: 

0,  
1,  
10, (rightmost digit starts over, and next digit to the left (in bold) is incremented) 
11,  
100, (rightmost two digits start over, and next digit to the left (in bold) is incremented) 
101, ... 
 

From  http://en.wikipedia.org/wiki/Binary_numeral_system#Counting_in_binary 
 

 Complete Control and Navigation 3 LAB 2 – Counting in Binary 
 Complete Control and Navigation 3 LAB 3 – LED Display of Binary 

Numbers 



13 

 

 Binary numbering system is a weighted system, like a decimal 
number, the position of each bit in a binary number is assigned a 
weight. 

 

Positive Powers of Two (Whole Numbers) 

Position of Bit Left to Right 7 6 5 4 3 2 1 0 

Binary Weight 27 26 25 24 23 22 21 20

Decimal Equivalent 128 64 32 16 8 4 2 1 

 
This table only shows eight bit positions.  Many more bits may be added to the left if 
needed. 

 A binary number is the sum of the weights of each bit.  For example, 
when converting the binary number 1101 to a decimal: 

 

   The binary number 1101 = (1 x 23) + (1 x 22) + (0 x 21) + (1 x 20) 
          = (1 x 8) + (1 x 4) + (0 x 2) + (1 x 1) 
          =     8      +     4     +      0     +      1 
          = 13 (decimal) 

 Not all binary codes are weighed. For example, two codes that are 
unweighed are the ASCII and 7-segment codes. 

 Hexadecimal Numbering System: 
 The hexadecimal numbering system has only 16 different numerals 

(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,and F). 
 To distinguish a hexadecimal number from a decimal number, the 

prefix $ will be added to a hexadecimal number, e.g., $1F.   
 Counting in Binary: 
 

Counting in hexadecimal is similar to counting in any other number system. Beginning with a 
single digit, counting proceeds through each symbol, in increasing order. 

0,  
1,  
2,… 
E, 
F, 
10, (rightmost digit starts over, and next digit to the left (in bold) is incremented) 
11, 
12, … 
FE, 
FF,  
100, (rightmost two digits start over, and next digit to the left (in bold) is incremented) 
101, ... 
 

 



14 

 

 Hexadecimal numbering system is a weighted system, 
o Like a decimal number, the position of each digit in a 

hexadecimal number is assigned a weight. 
 

 
 

 A hexadecimal number is the sum of the weights of each digit.  For 
example, when converting the hexadecimal number 306 to a decimal: 

 

   The hexadecimal number 306 = (3 x 162) + (0 x 161) + (6 x 160) 
          = (3 x 256) + (0 x 16) + (6 x 1) 
          =     768     +      0        +     6 
          = 774 (decimal) 
 

 Negative Numbers:  
 The most common method of representing signed numbers in digital 

data formats is the two’s complement system. 
 To get the two's complement negative notation of an integer, you 

write out the number in binary. You then invert the digits, and add 
one to the result.  Search the web for more details. 

 ASCII Characters: 
 The American Standard Code for Information Interchange (ASCII) is 

a character encoding scheme.  ASCII is a 7-bit character code for 
representing English characters as numbers, with each letter 
assigned a number from 0 to 127. For example, the ASCII code for 
lowercase “r” is 114 (decimal) or 1110010 (binary). Most computers 
use ASCII codes to represent text, which makes it possible to 
transfer data from one computer to another.  See: http://www.ascii-
code.com/ 

 Floating Point Numbers:  There are several methods to store a number such 
as 3.14159 in digital formats. 

 First, the number can be broken into two numbers, one to the left of 
the decimal, and one to the right. For example, 3.14159 can be 
stored as two numbers, 3 and 14159. 

 With the next method, the number can be represented in ASCII 
characters.  3.14159 would be:  

ASCII Character    Decimal Code  
3    51 
   .    46 
1    49 
4    52 
1    49 
5    53 
9     57 



15 

 

 Finally, the floating point number can be converted to scientific 
notation and stored in parts. For example, IEEE-754 format contains 
the Sign, the Exponent, and the Mantissa: 
 

 
 

Figure 15:  IEEE 754 Floating Point Format and Example 
  

 Images and Sounds: 
 Colors can be conveyed digitally by sending a 1-byte scale (binary - 

00000000 to 11111111, decimal - 0 to 255, or hexadecimal - 0 to FF) 
of the three colors red, green, and blue (RGB color model).  See the 
examples in Figure 16. 

 

 
 

Figure 16: Examples of RGB Color Codes 
 

 Images are formed by denoting RGB color value of each pixel in the 
image.  There can be millions of pixels in an image.  

 

 
 

Figure 17: An Image Delineating the Pixels that Make Up the Image  



16 

 

 A movie is a sequence of still images that give the impression of 
motion. 

 Sound can also be converted to a digital format.   
 

 
 

Figure 18: Sound Converted to Digital Signal Then Converted Back to Sound 
Images from http://www.fanpop.com/spots/singing/images/430336/title/sing-photo 

and http://www.smothergoose.com/   
 

o Digital Data Transmission: 
 Serial and Parallel Transmission of Digital Data: 

 Serial data transmission sends one bit at a time over a single 
communication line. 

 

 
 

Figure 19: 8-Bit Serial Data Transmission 
 

 Parallel data transmission sends eight bits at the same time over 
eight different lines or wires. 

 

 
 

Figure 20: 8-Bit Parallel Data Transmission 
 



17 

 

 Serial data transmission is utilized in long distance data 
communication while parallel data transmission is used for high 
speed data transfer over short distances. 

 Serial and parallel data transmissions may include additional wires 
for support functions. 

 Synchronous vs. Asynchronous Data Transmission: 
 All data transfer methods requires coordination between the sender 

and receiver; creating a need for synchronization between the sender 
and the receiver. There are two formats for synchronizing between 
the two ends of the communication - synchronous and asynchronous.  
Both formats can be used in serial and parallel data transmission. 

 Synchronous Data Transmission:  The synchronous signaling 
methods use two different signals. A pulse on one signal line 
indicates when another bit of information is ready on the other signal 
line.   In synchronous transmission, the stream of data to be 
transferred is encoded and sent on one line, and a periodic pulse of 
voltage which is often called the "clock" is put on another line that 
tells the receiver about the beginning and the ending of each bit (or 
byte). 

 

 
 

Figure 21: Synchronous Data Transmission Signals 
 

 Asynchronous Data Transmission: A transmission technique that 
does not require a common clock between the communicating 
devices; timing signals are derived from special characters in the 
data stream itself. 

 

 
 

Figure 22: Asynchronous Data Transmission Signal 



18 

 

 Common Serial Data Transmission Protocols: 
o RS-232:  

 For communications over short to moderately distances 
(30 meters or more). 

 Asynchronous communication protocol 
 Though dated, RS-232 is useful for robotics, ROVs, 

AUVs, and other computer controlled devices. 
 Formal RS-232 will require a “232” driver such as the 

MAX232.  The MAX232 is a dual driver/receiver that 
includes a capacitive voltage generator to supply RS-
232 voltage levels from a single 5-V supply.  Higher 
voltages levels are sent over long cables since cable 
resistance reduces the voltages the further the signal 
has to travel. 

o RS-485: 
 Improved version of RS-232 
 Asynchronous communication protocol 
 Uses two signal wires and one ground wire 
 More reliable over longer distances 
 More than two devices can share the same set of wires 

o I2C and SPI: 
 Used for communication with close by sensors, other 

microcontrollers, and other digital devices 
 Refer to the web and books for further information. 

o Ethernet: 
 Not an easy protocol to master 
 Most commonly used protocol for transferring data in 

computer networks and the internet 
o USB: 

 A fast serial communication standard 
 Used for connecting computer peripherals 
 Not easy to learn 
 Serial-to-USB adapters are available that simplify 

utilizing USB 
   

 
 



19 

 

Electronics Technology and Robotics II 
Digital Fundamentals LAB 1 – Counting in Decimal 

 
 Purpose:  When counting in decimal number system, the digit to the left is incremented 

as digits are exhausted.   The purpose of this lab is to cement this mathematical concept 
in the mind of the student. 

 
 Materials: 
 

 1 - Pencil 
 

 Procedure: 
 In Table 1, complete counting from 0 to 20. 
 In Table 2, complete counting from 90 to 110. 
 In Table 3, complete counting from 990 to 1010. 
 

 Results: 
 

 
 

         Table 1                Table 2         Table 3  
 

 Discussion: 
 Notice that when all of the number combinations to the right have been exhausted, 

the digit to the left is incremented. 



20 

 

Electronics Technology and Robotics II 
Digital Fundamentals LAB 2 – Counting in Binary 

 
 Purpose:  The purpose of this lab is to develop the student’s skill in counting in 

binary. 
 Materials: 

 1 - Pencil 
 Procedure: 

 In Table 1, fill in the binary equivalent for the decimal given: 
 In Table 2, fill in the next binary number if you are counting: 

 

 
 

Table 1 
 

 
 

Table 2 



21 

 

Electronics Technology and Robotics II 
Digital Fundamentals LAB 3 – LED Display of Binary Numbers 

 
 Purpose:  The purpose of this lab is to show the student a visual representation of 

binary numbers and to teach several ways of demonstrating a binary state. 
 
 Materials: 

 
 1 – Analog/Digital Trainer 
 

 Procedure: 
 Connect four consecutive HI/LOW toggle switches to four consecutive LEDs on 

the analog/digital trainer. 
 Remember that 0 is represented by an off or LOW state (0V) and a 1 is 

represented by an on or HIGH state (+5V). 
 Give an LED display for each of the following binary numbers: 

 %0000 
 %0001 
 %0101 
 %1111 

 Using the toggle switches, give a visual display of counting from %0000 to 
%1111 

 
  
 

 



22 

 

Cornerstone Electronics Technology and Robotics III 
Control and Navigation 3 Lab 3 – MAX232 Converter Chip 

 
 Purpose:  The purpose of this lab is to demonstrate the conversion of RS-232 signals 

to CMOS or TTL signals using the MAX232 converter chip. 
 

 Apparatus and Materials: 
 

o 1 – Breadboard with +5V Power Supply 
o 1 – Function Generator 
o 1 - Oscilloscope 
o 1 – MAX232 RS232 Driver/Receiver 

 Different types of MAX232s require different external capacitors.  For 
example, the MAX232A uses 0.1 uF capacitors. 

 MAX233 and MAX233A do not use external capacitors 
 The 10K pull-up resistor R1 helps with the MAX232 noise sensitivity 

o 5 – 1uF Capacitors 
o 1 – 10K Resistor 
 

 Procedure: 
o Wire the circuit below.  Be very careful that you install the capacitors with the 

polarity placed in the correct manner. 
o RS-232 to TTL: 

 Connect the oscilloscope Channel 1 to Point D, (RS-232 input), and the 
common ground. 

 View only Channel 1 trace. 
 Set the Channel 1 VOLT/DIV to 5V. 
 Set the TIME/DIV to 0.2 ms. 
 Position the trace in the center of the screen. 

 Also connect the function generator to Point D, (RS-232 input), and the 
common ground. 

 Set the waveform to generate a square wave. 
 Set the frequency to approximately 1 kHz. 
 Viewing Channel 1 on the oscilloscope, adjust the amplitude of 

the square wave such that it is from +10V to -10V.  This square 
wave signal will simulate a RS-232 signal input into the MAX232. 

 Now position Channel 1 trace to top of the oscilloscope screen. 
 Connect the oscilloscope Channel 2 to Point B, (To CMOS or TTL), and 

the common ground. 
 View both Channel 1 and Channel 2 traces. 
 Set the Channel 2 VOLT/DIV to 5V. 
 Position the trace on the lower half of the screen. 

 Apply power to the circuit and verify that the MAX232 converts the RS-
232 signal (+10V to -10V) in Channel 1 to a CMOS or TTL signal (0V to 
+5V) in Channel 2.  Notice the inversion of the signal. 



23 

 

o TTL to RS-232: 
 Connect the oscilloscope Channel 1 to Point A, (From CMOS or 

TTL), and the common ground. 
 View only Channel 1 trace. 
 Set the Channel 1 VOLT/DIV to 2V. 
 Set the TIME/DIV to 0.2 ms. 
 Position the trace in the center of the screen. 

 Also connect the function generator to Point A, (From CMOS or 
TTL), and the common ground. 

 Set the waveform to generate a square wave. 
 Set the frequency to approximately 1 kHz. 
 Viewing Channel 1 on the oscilloscope, adjust the amplitude 

of the square wave such that it is from +2.5V to -2.5V. 
 Use the offset control to make this signal shift to 0V to +5V.  

This square wave will simulate a CMOS or TTL signal input 
into the MAX232. 

 Now position Channel 1 trace to top of the oscilloscope 
screen. 

 Connect the oscilloscope Channel 2 to Point C, (RS-232 Output), 
and the common ground. 

 View both Channel 1 and Channel 2 traces. 
 Set the Channel 2 VOLT/DIV to 5V. 
 Position the trace in the lower half of the screen. 

 Apply power to the circuit and verify that the MAX232 converts the 
CMOS or TTL signal (0V to +5V) to a RS-232 signal (+10V to -
10V).  Notice the inversion of the signal. 
 

 

MAX232 Dual RS-232 Driver Circuit 

 


