Programming PIC Microcontrollers in PicBasic Pro — Lesson 1
Cornerstone Electronics Technology and Robotics Il

e Administration:
o Prayer

e PicBasic Pro Programs Used in This Lesson:
0 General PicBasic Pro Program Listing:
http://www.cornerstonerobotics.org/picbasic.php

o Lab 1 flickerl as .pdf:
http://www.cornerstonerobotics.org/code/blink1.pdf

o Lab 1 flickerl as .pbp:
http://www.cornerstonerobotics.org/code/blink1.pbp

0 Lab 1 railroadl as .pdf:
http://www.cornerstonerobotics.org/code/railroad.pdf

0 Lab 1 railroadl as .pbp:
http://www.cornerstonerobotics.org/code/railroad.pbp

e Computer Programming:
o In order to achieve the task at hand, a programmer must write a
sequence of instructions and create data structures for the computer to

execute.

0 Write a list of detailed instructions for the instructor to make a peanut
butter and jelly sandwich, given the starting conditions before you.
e PIC Microcontrollers Overview:
0 Using microcontrollers (MCUS):
= You will need to know how to connect the microcontroller to the
hardware.
= You will need to know how to write and program code into the
microcontroller.
o0 Levels of Programming Languages:
= MCUs are programmed in machine language code (binary
code) which looks like:

0000100001001001
0001100000000011
0111100000000111

Machine language code is the native language for PIC
MCUs.

PIC machine language code ends with .hex

= Assembly level code makes programming commands more
recognizable; however, it forces the programmer to deal with the
MCUs internal structure. Assembly code looks like:

movIw h'07’
addwf INDF, w
btfsc STATUS,C

Another difficulty with assembly-level code is that each
line of machine code must have a line of assembly code
written.

e Assembly code commands are executed at the crystal
frequency/4.
e PIC assembly code ends with .asm
High-level language: A programmer needs a programming
language that relates to problem solving more than the internal
structure of a microcontroller.
e The most common high-level language for programming
MCUs is C.
e We will start with the language PicBasic Pro, then in time,
move on to C. PicBasic Pro code appears like:

ForcO=1TO 100 ‘Countfrom 1to 100

SOUND 1, [75,100] ‘ Generate tone on pin 1

Pause 20 ‘ Delay 20 milliseconds

Next ‘ Return to FOR and add 1 to cO

e PicBasic Pro code ends with the extension .pbp.

o Programming the microcontroller with PicBasic Pro:

You will need to communicate with the microcontroller and tell it
what instructions you want it to perform. The program language
for the PIC microcontrollers uses about 75 words, or
instructions, called PicBasic Pro language. Make sure you
program using commands that are handled by the PicBasic Pro
compiler (PBP), not the PicBasic Compiler. See:
http://store.melabs.com/cat/PBP.html

You will program on the computer in PicBasic Pro language.
You will then compile your program using the PicBasic Pro
compiler. The compiler first compiles the program into
assembly code (.asm) and then automatically converts the
assembly code into the final machine code (.hex) which is then
programmed into a microcontroller using the melabs U2
programmer. See: http://melabs.com/products/usbprog.htm
Steps in programming a microcontroller will be discussed in
more detail later in the class.

o PIC16F88:

Cost is about $2.60 each
The PIC 16F88 is an 18-pin device that is equipped with two
input/output ports, PORTA and PORTB.
PORTA has eight input/output (I/0O) lines and the PORTB has
eight I/0O lines available.
e PORTA /O lines are labeled RAO, RA1, RA2, RA3, RA4,
RA5, RAG, and RA7.
e PORTB I/O lines are labeled RBO, RB1, RB2, RB3, RB4,
RB5, RB6, and RB7.
Ordering direct from Microchip:
http://www.microchip.com/wwwproducts/Devices.aspx?dDocNa

me=en010243

PIC16F88 datasheet:
http://wwl1.microchip.com/downloads/en/devicedoc/30487c.pdf

= Pin Layout:

PIC 16F88
1 [Jraz N RA1[] 18
2 [Jras Raol | 17
3 [Jras RA7IOSC|] 16
4 [JrAsMCLR rRasosc]] 15
5 [Jvss vop[] 14
6 [|reo rRB7[] 13
7 [re1 RB6 12
8 [Jre2 RBS 1
9 []res RB4 10

e Programming PIC Microcontrollers:
o0 Outline of a PicBasic program:
= PicBasic programs generally follow a predetermined format in
the order given below.
Title
Program description
Revision history
Constants/Defines
Variables
Initialization
Main Code: During each main code cycle:
o0 The MCU monitors the status of the input sensors
0 Executes the logic programmed in the main code
o0 Changes the state of the output devices
o0 Input/Output Port Registers and Input/Output Pins:
= In a computer, registers are a set of data storage places that are
part of a computer processor. A register may hold a computer
instruction, a storage address, or any kind of data. In our
immediate case, data stored in the I/O port register is 8-bit wide
information about 1/0 pins. See lesson addendum for the
PIC16F88 Register File Map.
= Ports are connected to input/output (I/O) pins in a PIC. PORTB
is the 1/0O port name for the I/O pins associated with PORTB.
= Typically, an I/O port contains 8 pins. For example, PORTB has

8 pins.
M~ (o] wn = o (o] - o
m 7} m m o m m m

P~ (o] wn =T (323 o - o

an] m m aa] an] m m aa]

o o o o o o o o

E £ £ £ £ £ £ E

&4 & & & & & & @&
PORTB

The PIC16F88 has two ports, PORTA and PORTB.

PORTA has 8 — I/O pins (RAO — RA7) and PORTB has 8 — I/0
pins (RBO — RB7)

Pins can be accessed in a number of ways. One way to specify
a pin is to use its PORT name and bit number:

PORTB.1=1 ‘Set PORTB, bit 1 to a 1 or HIGH (+5V)
‘PORTB.1 is pin RB1.
PORTA.3=0 ‘ Set PORTA, bit 3to a 0 or LOW (0V)

‘PORTA.3 is pin RA3.

Another way to access pins is to change the entire 1/0 port
register.

PORTB = %00000000 ‘ Set all PORTB pins to LOW
PORTB = %11111111 * Set all PORTB pins to HIGH
PORTA = %00000001 ‘ Set RAO HIGH and RA1-RA7 to LOW.

o Tri-State Registers (TRISx Registers):

TRISx as the data-direction register name for PORTx. For
example, TRISB is the TRIS register for PORTB.

TRISX register is used to set up or initialize a pin as an input or
an output. A “1” makes a pin an input and a “0” makes a pin an
output. To remember, 1 looks like the | in Input and the O looks
like the O in Output. Pins can be arranged in any combination
of input and output.

TRISB Register Order:

In graphic form:

Bit 7
Bit6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 0

Bit 1

M~ © Ty) < ™ o — o
[a] (48] [an] [a8) [aa] m m (s8]
x @ ¥ «© x© x© K «
£ £ £ £ £ £ c £
a o & & & o© o &

TRISB

As written in a program:

RB7 RBO

TRISB = %00000000

= Example TRIS Registers:

TRISB = %00001111 ‘ Set RBO — RB3 as inputs and
RB4 — RB7 as outputs.

TRISA = %00000001 ‘ Set RAO as an input and RAL —
RATY as outputs.

= TRISX registers may be written in decimal form as well. TRISA
= %00000000 can be written as TRISA = 0 and TRISB =
%11111111 is the same as TRISB = 255.

= Individual bit directions may also be set.

TRISB.2=0 ‘Set pin PORTB.2 as an output.

e New PicBasic Pro Commands:
o PAUSE:

Format:
PAUSE Period
Explanation:
Pause the program for Period milliseconds. Period is 16-bits, so
delays can be up to 65,535 milliseconds (a little over a minute).
PAUSE has the same accuracy as the
system clock. PAUSE assumes an oscillator frequency of
4MHz. If an oscillator other that 4MHz is used, PBP must be told
using a DEFINE OSC command. See the section on speed for
more information.

Example:
PAUSE 1 ‘ Delay for 1 millisecond
PAUSE 1000 ‘ Delay for 1000 milliseconds or 1

second

See page 112 in the melabs PicBasic Pro Compiler manual:
http://melabs.com/resources/pbpmanual/

o GOTO:
Format:
GOTO Label

Explanation:
Program execution continues with the statements at Label.

Example:

LED1: ‘ Label named LED1
PORTB.0=1 ‘Set pin RBO to HIGH (+5V)
GOTO LED1 ‘ Program jumps to LED1

See about page 146 in the PicBasic Pro Compiler manual:
http://melabs.com/resources/pbpmanual/

o END:

Format:

END

Explanation:

Stop program execution and enter low power mode. All of the
I/O pins remain in their current state. END works by executing a
Sleep instruction continuously in a loop.

An END or STOP or GOTO should be placed at the end of
every program to keep it from falling off the end of memory and
starting over.

Example:
END

e Review of +5V Voltage Regulator Circuit:
0 The circuit below will create a +5 V voltage source for the PIC

microcontroller circuits.

+9V

@ IN ouT O

GND

+5V

IC1 _1C1

78L05 fP_ O
O - O

+5 Volt Voltage Regulator Circuit

e Complete LAB1 - blink1.pbp Program
e Procedure to Write, Compile and Download Your Program into the PIC

Chip:

Double click on the MicroCode Studio icon on your desktop.

Go to Desktop and open the folder with your name.

Make sure you have opened your own folder before proceeding.
Now open blink1.pbp if it is not already on one of the program tabs.
Type in your program or program changes.

Make sure that the microcontroller on the tool bar matches the
microcontroller you are programming.

Click on Project on the tool bar.

Now double click on Compile and Program or strike F10. This step will
automatically save your program and set up the .HEX file to be
downloaded into the 16F88 chip.

On the melabs Programmer, make sure the 16F88 chip is selected.

If the 16F88 is inserted on the breadboard, carefully use the chip
extractor tool to remove the chip from the breadboard.

Install the 16F88 microcontroller into the ZIF adapter; verify the 16F88
is pointing in the correct direction.

Find and click on the Program button to download the program into
your chip. The LED will flash several times. Click on the OK button.
Remove the chip from the ZIF adapter and insert it into the proper
position on your breadboard.

Cornerstone Electronics Technology and Robotics Il
PIC Microcontrollers Programming 1 LAB 1 - blink1l.pbp Program

e Purpose: The purpose of this lab is to acquaint the student on how to:
Compile a PicBasic program

Download a PicBasic program into a PIC16F88 microcontroller
Structure a program using three PicBasic commands

Make simple modifications to a PicBasic program

Make modifications to the TRIS register

@]

O O0OO0oOo

e Apparatus and Materials:

2 — 2N2222A NPN Transistors
1 — 78L05 Voltage Regulator
1 - 0.1 uF Capacitor

= 1 — Robotic Car by Student

= 1 - Breadboard with +5V and +9V Power Supplies
= 1-150 Ohm, ¥2 Watt Resistors

= 2-470 Ohm, ¥2 Watt Resistors

= 1-1K, ¥ Watt Resistor

= 1-LED

= 2 - DC Motors

e Procedure:
0 Wire the blink1 circuit below on your robotic car’s breadboard.

16F88 Schematic Layout 16F88 Physical Layout
IC1 1 IC2 18
28— 14y re7 2 2
+ 12 3 16
RB6 |= — -2
res 1 A4 15
16 10 5 14
2 0SC1\RA7 RB4 | = -
9 _6] 13
15 RB3 5 7 12
—]OSC2\RA6 RB2 |- =l 7
R1 4 RB1 5 R2 o o
Z2@E—AWW——{ MCLR\RA5 RBO AW - —
+ 47K 3 150
TOCKIRA4 |- r o
RA3 [&- ¥yul
RA2 I
5 RA1 ﬁ' —
VsS RA0 |
= PIC16F88
blink1

o Program blink1.pbp into the PIC16F88 following the procedure to
write, compile and download your program into the PIC chip at the end
of the lesson.

Install the 16F88 and test the circuit and program

Change the PAUSE values (timing values) and reprogram the chip.

O O

Cornerstone Electronics Technology and Robotics Il
PIC Microcontrollers Programming 1 LAB 1, Continued

e Challenges:

o0 Connect the resistor and LED to RB1 and make it blink. Save the
program as blinkrb1l. Remember to change the TRISB register to
make RB1 an output.

0 Railroad Crossing: Wire a circuit using RBO and RB1 as outputs and
program the chip so that two LEDs alternate flashes like a railroad
crossing. Let the flash time be 0.75 seconds. Save the program as
railrd1.

o Drive a Motor: Design a circuit and program a PIC16F88 which will
drive a motor in one direction only. Name the new program roadl.

= Use a9 vdc power source on a separate breadboard to drive
the motor.
= Tie the grounds of the +5 vdc and +9 vdc breadboards
together, but NOT the +5V and +9V power sources. Use two
batteries for the power sources; one for the +5 vdc and the other
for the +9 vdc bus rows.
= Step down the +9 vdc to +5 vdc using a 78L05 voltage regulator
circuit. Verify the +5 vdc and +9 vdc bus rows with a DMM.
= You may use notes from prior classes to review NPN transistor
switches.
= Hints:
o Keep wires away from the 16F88 chip since it will be
removed frequently from the circuit.
e Place the motor on the on the collector side of the NPN
transistor. Place a 1K ohm resistor between the 16F88
drive pin and the base of the NPN transistor. See the

circuit below:
+9V
IC1
e
5@ 14 vop rRe7 [12
RB6 |= MOTOR
11
16 RBS o
®losc1\ra7 RB4 Y
15] 8 2N2222A
7

OSC2\RA6 RB2

R1 4 RB1 < R2
2@ MM MCLR\RA5 RBO 4'\/\2\/\,—':
¥ 1K i 1K
TOCKI/RA4 |-
RA3 =
RAZ = =
. RA1 |2
] VSS RAD |

= PIC16F88

Transistor Switch as a Motor Driver

o Drive a Robot: Now combine this lesson’s circuitry and programming
to drive your robotic car through the taped course without crossing the
inside boundaries of the tape. Revise the program roadl.

You will have to use the process called dead reckoning since
the robot is not equipped with any sensors. Wikipedia definition
of dead reckoning: Dead reckoning is the process of estimating
one's current position based upon a previously determined
position, or fix and advancing that position based upon known
speed, elapsed time, and course.
Hints:

e Put the following code at the end of the program:

PORTB.0=0 ‘ Set PORTB, hit 1 to a LOW (0V)
PORTB.1=0 ‘ Set PORTB, hit 2 to a LOW (0V)
PAUSE 1 ‘ Pause 1 millisecond

This code will stop the robotic car.

PIC16F88 Register File Map

File
Address
Indirect addr. *| 00h
TMRO 01h
PCL 02h
STATUS 03h
FSR 04h
PORTA 05h
PORTB 06h
07h
08h
09h
PCLATH 0Ah
INTCON 0Bh
PIR1 0Ch
PIR2 0Dh
TMR1L OEh
TMR1H OFh
T1CON 10h
TMR2 11h
T2CON 12h
SSPBUF 13h
SSPCON 14h
CCPR1L 15h
CCPR1H 16h
CCP1CON 17h
RCSTA 18h
TXREG 19h
RCREG 1Ah
1Bh
1Ch
1Dh
ADRESH 1Eh
ADCONO 1Fh
20h
General
Purpose
Register
96 Bytes
7Fh
BankO

Indirect addr. *

OPTION-REG

PCL

STATUS

FSR

TRISA

TRISB

PCLATH

INTCON

PIE1

PIE2

PCON

OSCCON

OSCTUNE

PR2

SSPADD

SSPSTAT

TXSTA

SPBRG

ANSEL

CMCON

CVRCON

ADRESL

ADCON1

General
Purpose
Register

80 Bytes

accesses
70h-7Fh

Bankl

File
Address
80h
81h
82h
83h
84h
85h
86h
87h
88h
89h
8Ah
8Bh
8Ch
8Dh
8Eh
8Fh
90h
91h
92h
93h
94h
95h
96h
97h
98h
99h
9Ah
9Bh
9Ch
9Dh
9Eh
9Fh
AOh

Efh
FOh

FFh

Indirect addr. *

TRMO

PCL

STATUS

FSR

WDTCOM

PORTB

PCLATH

INTCON

EEDATA

EEADR

EEDATH

EEADRH

General
Purpose
Register

16 Bytes

General
Purpose
Register

80 Bytes

accesses
70h-7Fh

Bank2

File
Address
100h
101h
102h
103h
104h
105h
106h
107h
108h
109h
10Ah
10Bh
10Ch
10Dh
10Eh
10Fh
110h

11Fh
120h

16Fh
170h

17Fh

|:| Unimplemented data memory locations, read as '0".
Not a physical register.

*

Indirect addr. *

OPTION_REG

PCL

STATUS

FSR

TRISB

PCLATH

INTCON

EECON1

EECON2

Reserved

Reserved

General
Purpose
Register

16 Bytes

General
Purpose
Register

80 Bytes

accesses
70h-7Fh

Bank3

File

Address

180h
181h
182h
183h
184h
185h
186h
187h
188h
189h
18Ah
18Bh
18Ch
18Dh
18Eh
18Fh
190h

19Fh
1A0h

1EFh
1FOh

1FFh

10

