

 1

Electronics and Robotics I Week 17
Programming PIC Microcontrollers in PicBasic Pro – Servos

4 Hour Class

 Administration:
o Prayer
o Turn in Quiz

 PicBasic Pro Programs Used in This Lesson:
o General PicBasic Pro Program Listing:

http://www.cornerstonerobotics.org/picbasic.php
o Lab 1 switch1 as .pdf:

http://www.cornerstonerobotics.org/code/switch1.pdf
o Lab 2 master_slave_master1 as pdf:

http://www.cornerstonerobotics.org/code/master_slave_master1.pdf
o Lab 2 master_slave_slave1 as pdf:

http://www.cornerstonerobotics.org/code/master_slave_slave1.pdf
o Lab 3 servo1 as .pdf file:

http://www.cornerstonerobotics.org/code/servo1.pdf
o Lab 3 servo2 as .pdf file:

http://www.cornerstonerobotics.org/code/servo2.pdf
o Lab 3 servo3 as .pdf file:

http://www.cornerstonerobotics.org/code/servo3.pdf
o Lab3 servo4 as .pdf file:

http://www.cornerstonerobotics.org/code/servo4.pdf
 Programming PIC Microcontrollers, PicBasic Pro Basics Continued:

o Comments continued:
 Use lots of comments. Even though it may be perfectly obvious

to you what the code is doing as you write it, someone else
looking at the program may not have any idea of what you were
trying to achieve. While comments take up space (memory) in
your Basic source file, they do not take up any additional space
in the PIC MCU, so use them freely.

 Make the comments tell you something useful about what the
program is doing. For example, “Turn on the red battery low
LED” might be more useful than “Set pin 0 to 1”.

 A block of comments at the beginning of the program and
before each section of code can describe what is about to
happen in more detail than just the space remaining after each
statement. But don’t include a comment block instead of
individual line comments – use both.

 Specifying what each pin is connected to can be helpful in
remembering what hardware this particular program is designed
to run on.

o Constants:
 Named constants may be created in a similar manner to

variables. It can be more convenient to use a constant name
instead of a constant number. The standard format for
declaring a constant is:

Name of constant CON Constant value

 2

 An example is:

x CON 3

o Pin, Variable, and Label Names:
 Give pins names that will help you or someone else decipher

the program; judges in competitions are more able to follow the
program logic if the pins and variables are coherent. For
example, if the right motor is connected to PORTB.1, use the
VAR keyword to assign a proper name:

right_motor VAR PORTB.1

 Also, give variables logical names. For example, if you are
counting the number of times a switch1 is pressed, assign a
variable name such as the one below:

count_switch1 VAR BYTE

 Finally, assign coherent names to the program labels. If the
section of code is to turn the robotic car to the left, assign the
label name of “left_turn”.

 Identifiers (variable names and labels) may be up to 31
characters long, but must not start with a digit.

o Ports continued:
 As we set pins in PORTB for input or output (e.g. TRISB =

%11111110), we can also set pins to high or low using PORT.
For example:

PORTB = %00000000 sets all PORTB pins to low (0 volts).
PORTB = %11111111 sets all PORTB pins to high (+5 volts).

 Perform PIC Microcontrollers Programming 3 Lab 1 – Blink 3
Ways.

 New PicBasic Pro Commands:
o See the PicBasic Pro Compiler Manual by microEngineering Labs, Inc.

for a detailed explanation of these commands.
o IF…THEN:

Formats:

IF Comparison(s) THEN Label

IF Comparison(s) THEN Statement

Explanation:
The IF…THEN statement judges the comparison to whether it is
true or false. If the comparison is true (any other value than 0),
it will execute the THEN portion of the statement. If the
comparison is false (0), it will execute the statement following
the IF…THEN command.

 3

Example:

IF PORTB.0 = 1 THEN led2 'If the switch on PORTB.0 is
 ‘pushed, PORTB.0 becomes high
 ‘(+5V) and the comparison is true,
 ‘so the program jumps to label
 ‘led2

Summary of Formats for IF…THEN and IF…THEN…ELSE Conditional
Statements:

IF Comparison(s) THEN Statement

IF Comparison(s) THEN
Statement
Statement
Statement

 ENDIF

IF Comparison(s) THEN
Statement
Statement
Statement

 ELSE
Statement
Statement
Statement

 ENDIF

o Perform PIC Microcontrollers Programming 3 Lab 2 – switch1.pbp

 4

o GOSUB:
Format:

GOSUB Label

Explanation:
Jump to the subroutine at Label saving its return address on the
stack. Unlike GOTO, when a RETURN statement is reached,
execution resumes with the statement following the last
executed GOSUB statement. An unlimited number of
subroutines may be used in a program. Subroutines may also
be nested. In other words, it is possible for a subroutine to call
another subroutine. Such subroutine nesting must be restricted
to no more than four levels deep (12 levels for 7Cxxx and 27
levels for 18Xxxx).
Example:

GOSUB beep ‘Execute subroutine named beep

(More PicBasic Pro program code)

beep:

HIGH 0 ‘Turn on LED connected to RB0

SOUND 1,[80,10] ‘Sends tone to RB1

RETURN ‘Go back to the next line in the main

‘routine after the GOSUB command

o PULSOUT:
Format:

PULSOUT Pin, Period

Explanation:
Generates a pulse on Pin of specified Period. The pulse is
generated by toggling the pin twice, thus the initial state of the
pin determines the polarity of the pulse. If you want HIGH
pulses, initialize the pin to LOW (For example, PORTB.0 = 0).
Pin is automatically made an output. Pin may be a constant, 0 -
15, or a variable that contains a number 0 - 15 (e.g. B0) or a pin
name (e.g. PORTA.0). The resolution of PULSOUT is
dependent upon the oscillator frequency. If a 4MHz oscillator is
used, the Period of the generated pulse will be in 10us
increments. If a 20MHz oscillator is used, Period will have a 2us
resolution. Defining an OSC value has no effect on PULSOUT.
The resolution always changes with the actual oscillator speed.

 5

Examples:

PULSOUT PORTB.5,100 ‘ Send a pulse 1 msec long (at 4MHz) to RB5

PULSOUT 2,200 'Send a pulse 2 msec long to RB2.

 Power Supplies for Digital Circuits:
o Digital circuits require power supplies that provide a stable source of

power to all circuit components.
o Even though our circuits are powered from a voltage regulator, motors

and servos can disrupt the proper operation of the PIC microcontroller.
o Make certain that the servo power supply is separate from the PIC

power supply, i.e., have two +5V regulated power supplies.
Otherwise, if the servo spikes the single power line supplying power to
both the servo and the PIC, the 16F88 may reset.

 Introduction to Servos:
o A servo is a special motor used to provide control for a desired

rotational position through the use of feedback.
o Most servos have a position range of 180 degrees.
o A hobby servo is typically used to provide actuation for various

mechanical systems such as the steering of a RC car, the flaps on a
RC plane, or the rudder of a RC boat.

 Servo Connections:

Black = Ground
Red = +5 to +6 dc volts
White/Orange = Control wire (Futaba uses a white wire)

 6

 Servo Pulse Signal Widths and Period:
o Pulse width for counterclockwise position:

1.0 ms Pulse Width and Corresponding Servo Position

o Pulse width for center position:

1.5 ms Pulse Width and Corresponding Servo Position

o Pulse width for clockwise position:

2.0 ms Pulse Width and Corresponding Servo Position

o Perform LAB 3 – servo1, servo2, servo3, and servo4.

 7

Electronics and Robotics I Week 17
Programming PIC Microcontrollers in PicBasic Pro – Servos

LAB 1 – Blink – 3 Ways

 Purpose: The purpose of this lab is to reinforce the three different ways to
blink an LED.

 Apparatus and Materials:

 1 – Breadboard or Analog/Digital Trainer
 1 – PIC16F88
 1 – 4.7K Resistor
 1 – 150 Ohm Resistor
 1 – LED

 Procedure:
o Wire the circuit blink1 below on a breadboard.
o Turn on and off the LED using the following three sets of commands:

PORTB.0 = 1 & PORTB.0 = 0
HIGH 0 & LOW 0
PORTB = %00000001 & PORTB = %00000000

 Challenge:
o Wire an LED and a current limiting resistor to each pin in PORTB.
o Program the PIC16F88 to display binary counting from 0 to 255 using a

FOR…NEXT loop and a variable “x” set up in the following manner:

PORTB = x

PORTB = %00000000 may be written as PORTB = 0 since %00000000 in
binary is equal to 0 in decimal.
PORTB = %11111111 may be written as PORTB = 255 since %11111111
in binary is equal to 255 in decimal.

 8

Electronics and Robotics I Week 17
Programming PIC Microcontrollers in PicBasic Pro – Servos

LAB 2 – switch1.pbp

 Purpose: The purpose of this lab is to acquaint the student with the PicBasic
Pro command IF…THEN and their first input device into a PIC MCU.

 Apparatus and Materials:

 1 – Breadboard or Analog/Digital Trainer
 1 – PIC16F88
 1 – 1K Resistor
 1 – 10K Resistor
 2 – 150 Ohm Resistors
 2 – LEDs
 1 – NO Momentary Switch

 Brief Discussion of Pull-Down Resistor, R2:
o Pull-down resistor (R2) is used to hold the input to a zero (low) value

when no other component is driving the input, i.e., the switch is open.
If nothing is connected to pin RB0, the value of the input is considered
to be floating. R2 will allow the pin to keep a steady state at zero until
the switch is closed.

 Procedure:
o Wire the circuit switch1 & switch2 below on a breadboard and

program the 16F88 with switch1.pbp (NOT 16F877A_switch1.pbp).
o Remember, the switch connected to RB0 is considered an input

device. Input devices will allow your robotic car to interact with its
environment. This is the first input device discussed to date.

o Demonstrate the program using the circuit switch1.

 Challenge:
o Design a circuit and program such that a momentary switch connected to

the PIC turns on and off a dc motor. Save the program as switch10.pbp.

 9

Electronics and Robotics I Week 17
Programming PIC Microcontrollers in PicBasic Pro – Servos
LAB 3 - servo1.pbp, servo2.pbp, servo3.pbp, and servo4.pbp

 Purpose: The purpose of this lab is to acquaint the student with:

o PicBasic Pro commands GOSUB and PULSOUT.
o The basic operation of a hobby servo.

 Apparatus and Materials:

 1 – Breadboard or Analog/Digital Trainer
 1 – Oscilloscope
 1 – PIC16F88
 1 – 1K Resistor
 3 – 10K Resistors
 3 – NO Momentary Switches
 1 – Futaba 3003 Servomotor

 Procedure:
o Wire your breadboard for servo1 shown below. Program the 16F88

with servo1.pbp (NOT 16F877A_servo1.pbp).
o Make certain that the servo power supply is separate from the PIC

power supply, i.e., have two +5V power supplies. Otherwise, if the
servo spikes the single power line supplying power to both the servo
and the PIC, the 16F88 may reset.

o Relate the program code to the observed servo motions.

o Open servo2.pbp and download to your chip. Use the same
schematic as for servo1.pbp above.

 10

o Observe the servo behavior. This servo action is suitable for panning
sensor devices such as sonar sensors.

o Open servo3.pbp and download to your chip. Use the same
schematic as for servo1.pbp above.

o Observe the waveforms on the oscilloscope. Verify that the waveforms
are consistent with the program code.

o Open servo4.pbp and download to your chip. Wire your breadboard
for servo4 shown below.

o Observe the waveforms on the oscilloscope. Verify that the waveforms
are consistent with the program code.

 Challenge:
o Write a program that slows the panning motion of servo3.pbp. Save

the program as pan1.pbp.
o Design and build brackets to mount a servo and SRF04 sonar module

onto your robotic car. The sonar must be mounted atop the servo
horn. Remember when mounting the sonar that it is not accurate at
ranges closer than 3 cm.

o If you mount the SRF04 sonar module lower than 12” above the floor,
point it slightly upwards to avoid reflections from the flooring material.

 11

Conditional Statement Summary: Conditional statements allow programs to
branch to another part of the program when a conditional comparison is true.

Formats:

IF Comparison(s) THEN Statement

IF Comparison(s) THEN
 Statement
 Statement
 Statement
ENDIF

IF Comparison(s) THEN
 Statement
 Statement
 Statement
ELSE
 Statement
 Statement
 Statement
ENDIF

SELECT CASE Variable

 CASE Value
 Statement
 Statement

 CASE Another Value
 Statement
 Statement

 CASE IS Comparison
 Statement
 Statement

 CASE ELSE
 Statement
 Statement

END SELECT

Examples:

IF PORTB.0 = 1 THEN HIGH 2

IF PORTB.0 = 1THEN
 HIGH 2
 LOW 3
 HIGH 6
ENDIF

IF PORTB.0 = 1THEN
 HIGH 2
 LOW 3
 HIGH 6
ELSE
 LOW 2
 LOW 5
 LOW 7
ENDIF

SELECT CASE x

 CASE 1
 LCDOUT $FE, 1, “x = “, DEC x
 x = x + 1

 CASE 2
 LCDOUT $FE, 1, “x = “, DEC x
 x = x + 2

 CASE IS > 10
 LCDOUT $FE, 1, “x > 10 “
 x = 0

 CASE ELSE
 LCDOUT $FE, 1, “Problem number”
 x = 0

END SELECT

 12

