Digital Applications

- Administration:
o Prayer
o Turn in quiz
- Logic Probes:
o Basic test equipment for digital circuits
- 7- Segment Displays:
o A display made of 7 separate LEDs that have been combined into one package for displaying numbers.
o Standard 7-segment display layout and 10 digits:

o Common Cathode 7-Segment Display:
- In a common cathode 7-segment display, all of the cathodes from all the LED's are connected together. The 150 ohm resistor limits current through all of the LED's to ground.
- Each one of the LED's, (A through DP), will light only when it is connected to $\mathrm{V}_{\mathrm{cc}},(+5 \mathrm{~V})$, either manually or through a device such as a PIC microcontroller.

7-Segment Display with Common Cathode
o Common Anode 7-Segment Display:

- In a common anode 7-segment display, all of the anodes of all the LED's are connected together to V_{cc}, or in our case, +5 volts. The 150 ohm resistor limits current through all of the LED's.
- Each one of the LED's will light only when cathode is connected to ground, either manually or through a device like a 74LS47 decoder (see Digital Applications LAB 2).

7-Segment Display with Common Anode

- Perform Digital Applications LAB 1-7-Segment Displays
- BCD or Binary Coded Decimal:
o A hybrid or mixture of decimal and binary numbering systems
o Each decimal digit is replaced by its 4-bit binary number equivalent.
o Used at input/output ports of digital systems, e.g. Digital Applications LABs 2, 3, and 4.

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
$10-15$	Invalid

Decimal Digits and BCD Equivalent

o Only valid BCD codes are 0000 - 1001; binary numbers above 1001 are not valid. For example, 1010 is not a valid BCD code. BCD codes have 4 bits.
o The decimal number 95 is represented by 10010101 (95) or 10010101. The decimal number 9 is converted to the BCD code equivalent 1001 and the decimal number 5 is converted to the BCD code equivalent 0101, then they are joined together as 10010101.
o The decimal number 631 is represented by 011000110001 (6 31) or 011000110001.
o Write the decimal number 8160 in BCD code.

- Digital Encoders and Decoders:
o A decoder is a digital circuit device that converts coded information (like a binary number) into a noncoded form (like a 7-segment display of a decimal number).
o Complete LAB 2 - BCD-to-7-Segment Decoder
- Flip-Flops:
o Used in counters, timers, sequencing devices, and memories.
- Counters:
o A counter is a digital circuit that counts electronic events, such as pulses, usually indicating consecutive integers.
o There are two types of counters: up counters which increase in value and down counters which decrease in value.
o A counter may be:
- A 2 - bit binary counter (\%00 to \%11)
- A 3 - bit binary counter (\%000 to \%111)
- A 4 - bit binary counter (\%0000 to \%1111)
- A decade counter (0 to 9)
- This list is not exhaustive
o Synchronous Counters - all memory elements are simultaneously triggered by the same clock.
o Decade Counter:
- A decade counter is a counter that has ten states.
o Complete LAB 3 - BCD Decade Counter
o Complete LAB 4 - Cascade BCD Decade Counter
- Purpose: The purpose of this lab is to acquaint the student with a common cathode and common anode 7-segment displays.
- Apparatus and Materials:
o 1 - Analog/Digital Trainer
o 1 - Jameco 24782 Common Cathode 7-Segment Display
- Maximum voltage rating is 2.8 V
o 1 - Jameco 97172 Common Anode 7-Segment Display
- Maximum voltage rating is 2.8 V
o 1-150 Ohm Resistor
- Procedure:
o Using +5 volts as $V_{c c}$, connect the Jameco 24782 common cathode 7segment display to display the number 3 . Connect the 7 -segment display pins to the $\mathrm{HI} / \mathrm{LO}$ switches as shown in the table below.
Remember, the maximum voltage rating for this 7-segment display is 2.8 V , i.e., remember the $\mathbf{1 5 0}$ ohm resistor.

7-Segment Pin	HI/LO Switch
A	0
B	1
C	2
D	3
E	4
F	5
G	6

o Use the logic probe to measure each pin and record the results in the first table below.
o Now generate all of the codes for all of the digits $0-9$ and fill in the table on the next sheet.

Jameco 24782
Common Cathode
Pin Layout

- Results for Displaying the Number 3:

Pin	-	G	F	E	D	C	B	A
1 or 0	0							

- Discussion: Notice that the line of 1's and 0's in the table can be thought of as a 7-segment code where each number (0-9) has a distinct binary code. Unlike a binary number where each bit is weighted, this binary code is unweighted. This means that the position of each bit does not indicate a magnitude represented for that position.
- Results Continued:

Decimal	-	G	F	E	D	C	B	A
0	0							
1	0							
2	0							
3	0							
4	0							
5	0							
6	0							
7	0							
8	0							
9	0							

7-Segment Display Look-up Table
o Using a calculator or pc, convert the following hexadecimal numbers to binary numbers and display them on the analog/digital trainer. The least significant bit of the binary number is displayed using the $0 \mathrm{HI} / \mathrm{LO}$ switch of the analog/digital trainer. This switch corresponds to the "A" LED on the standard 7 -segment display layout. The hexadecimal numbers are: \$6F, \$7F, \$7, \$7D, \$6D, \$66, \$4F, \$5B, \$6, \$3F. In the binary numbers, the zeros to the left of the most significant " 1 " are not shown.

Hexidecimal	Binary	7-Segment Display
$\$ 6 \mathrm{~F}$		
$\$ 7 \mathrm{~F}$		
$\$ 7$		
$\$ 7 \mathrm{D}$		
$\$ 6 \mathrm{D}$		
$\$ 66$		
$\$ 4 \mathrm{~F}$		
$\$ 5 \mathrm{~B}$		
$\$ 6$		
$\$ 3 \mathrm{~F}$		

Cornerstone Electronics Technology and Robotics II Digital Applications LAB 1 - 7-Segment Displays Continued
o Connect the Jameco 97172 common anode 7-segment display to display the number 2. Remember, the maximum voltage rating for this $\mathbf{7}$-segment display is 2.8 V .

Jameco 97172
Common Anode
Pin Layout

- Purpose: The purpose of this lab is to acquaint the student with the operation of a BCD-to-7-Segment Decoder.
- Apparatus and Materials:
o 1-Analog/Digital Trainer
o 1-150 Ohm, ½ watt Resistor
o 1 - Jameco 97172 Common Anode 7-Segment Display
o 1-74LS47 BCD-to-Seven-Segment Decoder
- Procedure:
o Wire the 74LS47 decoder to the 7-segment display as shown. Pin 8 is grounded; Pin 16 is +5 V on the 74 LS 47 chip.
0 Use the $\mathrm{HI} / \mathrm{LO}$ toggles to create the BCD inputs for Pins 7, 1, 2, and 6. See Table 1 below.

74LS47 Pin	HI/LO Switch
7	0
1	1
2	2
6	3

Table 1
o Using BCD code as the inputs, display each number, $(0-9)$ on the 7segment display.

74LS47 BCD to Decimal Decoder

- Table 2 lists 74LS47 inputs and 7-segment display outputs:

BCD Code	74LS47 Pin Inputs (BCD Code)				7-Segment Display
	Pin 6	Pin 2	Pin 1	Pin 7	
	ID	IC	IB	IA	0
0000	0	0	0	0	1
0001	0	0	0	1	2
0010	0	0	1	0	3
0011	0	0	1	1	4
0100	0	1	0	0	5
0101	0	1	0	1	6
0110	0	1	1	0	7
0111	0	1	1	1	8
1000	1	0	0	0	9
1001	1	0	0	1	

Table 2

Cornerstone Electronics Technology and Robotics II Digital Applications LAB 3 - BCD Decade Counter

o Purpose: The purpose of this lab is to acquaint the student with the operation of a BCD decade counter.

o Apparatus and Materials:

- 1 - Analog/Digital Trainer
- 1 - 150 Ohm, $1 / 2$ watt Resistor
- 1 - Jameco 97172 Common Anode 7-Segment Display
- 1 - 74LS47 BCD-to-Seven-Segment Decoder
- 1 - 74LS160 BCD Decade Counter

o Procedure:

- Wire the following BCD decade counter circuit using LEDs as outputs.
- The LEDs give a binary representation of the counter BCD code output. Toggle the pulse on Pin 2 to advance the BCD count. Pulse (Pin 2) is connected to S1, one of the Pulse toggle switches on the analog/digital trainer.
- If using a breadboard, S1 must be debounced. See the following links:
- http://www.ganssle.com/debouncing.pdf
- http://www.geocities.com/thetonegod/debounce/debounce.html
- http://www.bioinspired.com/users/ajg112/electronics/debounce.sht ml
- Use the $\mathrm{HI} / \mathrm{LO}$ toggle switches as the inputs for Pins $3,4,5$, and 6 . See Table 3 below.

74LS160 Pin	HI/LO Switch
3	0
4	1
5	2
6	3

Table 3
Synchronous BCD Decade Counter

Decade Counter Circuit Driving LEDs

- Connect the counter to the decoder as shown below. Note: When connecting the 74LS160 to the 74LS47, just add the 74LS160 BCD decade counter onto the 74LS47 decoder circuit already on the breadboard.

Decade Counter Circuit Driving BCD to 7-Segment Decoder

Cornerstone Electronics Technology and Robotics II Digital Applications LAB 3 - BCD Decade Counter Continued

- 74LS160N Features:
- ENP and ENT, pins 7 and 10 respectively, must be HIGH for the counter to advance. When one or both are LOW, the counter is disabled.
- LOW on CLR, pin 1, will reset counter to 0 .
- Can preset counter to any BCD count between 0 and 9 . Use A, B, C, and D to preset BCD number. A is the LSB, or the Least Significant Bit, and D is the MSB, or the Most Significant Bit. LD (Load), pin 9, must be on LOW to accept the preset number on the next pulse.
- RCO (Ripple Clock Output), not used here, goes HIGH when the counter reaches the terminal count of 9 . This output in conjunction with the enable inputs allows these counters to be cascaded for higher count sequences.
- See:
http://www.datasheetcatalog.com/datasheets pdf/7/4/L/S/7 4LS160.shtml
Texas Instruments page 5 for schematic of counter.

Cornerstone Electronics Technology and Robotics II Digital Applications LAB 4 - Cascade BCD Decade Counter
o Purpose: The purpose of this lab is to acquaint the student with the method of cascading BCD decade counters.
o Apparatus and Materials:

- 1 - Analog/Digital Trainer
- 2 - 150 Ohm, $1 / 2$ watt Resistors
- 2 - Jameco 97172 Common Anode 7-Segment Displays
- 2 - 74LS47 BCD-to-Seven-Segment Decoders
- 2 - 74LS160 BCD Decade Counters
o Procedure:
- Wire the two cascade BCD decade counter circuit on the following page.
- Use the $\mathrm{HI} / \mathrm{LO}$ toggle switches as the inputs for Pins $3,4,5$, and 6 for both BCD decade counters according to Tables 4 and 5.

LSD 74LS160 Pin	HI/LO Switch
3	0
4	1
5	2
6	3

Table 4

MSD 74LS160 Pin	HI/LO Switch
3	4
4	5
5	6
6	7

Table 5

- LOW on CLR (pin 1) will reset counter to 00 since both CLRs are tied together.
- The counter may be preset to any count between 00 and 99. Use presets A, B, C, and D on each counter to preset BCD number for each counter. A is the LSB, or the Least Significant Bit, and D is the MSB, or the Most Significant Bit for each BCD number. LD (Load), pin 9 on either chip, must be on LOW to accept the preset number on the next pulse. Both of the pin 9s on the counter chips are tied together.
- Use S1 to activate the count.
- Be careful not to connect pin 7 to +5 V in the MSD counter.
- Additional counters may be cascaded onto this arrangement as shown on page 22 of the Texas Instrument 74LS160 datasheet.
See:
http://www.datasheetcatalog.com/datasheets pdf/7/4/L/S/74LS16 0.shtml

Cascade BCD Decade Counter

See applet: http://www.falstad.com/circuit/e-deccounter.html

