Cornerstone Electronics Technology and Robotics Week 31 Inductance and RL Circuits

- Administration:
 - o Prayer
 - o **Turn in quiz**
 - Oral presentations
- Electricity and Electronics, **Section 14.1**, Inductance in DC Conditions:
 - Introduction: The study of electronics revolves around resistance, inductance, capacitance, and the combination of these in series and parallel circuits. We have already covered resistance in Chapter 3 and capacitance in Chapter 15, now we will study inductance in this chapter.
 - Inductance is the property in electrical circuits that resists a change in *current*. Don't confuse inductance with *capacitance* which is the property in electrical circuits that resists a change in *voltage*.
 - An inductor is an electronic component that is used to produce inductance in a circuit.
 - This opposition to a change in *current* is the result of the energy stored within the *magnetic field* of the *inductor*. Remember that a *capacitor* opposes a change in *voltage* by storing its energy in an *electric field*.
 - Inductance is symbolized by the letter L, measured in henrys (H). Usually, in electronics smaller values of henrys are used like mH (millihenry).
 - Most inductors have a low dc resistance since they are wound from copper wire.
 - Except for some radio circuits, inductors are not used in modern electronic circuits as often as resistors and capacitors.
 - Other names:
 - Coil
 - Reactor
 - Choke
 - o Types:
 - Chokes
 - Tuning Coil
 - Toroidal Coil
 - o Symbol:

Inductor

Transformer

- Counter emf:
 - When current through an inductor is increased or decreased, the inductor "resists" the *change* in current by producing a voltage between its leads in opposing polarity to the *change*.
 - View <u>http://www.williamson-labs.com/480_rlc-l.htm#top</u>
 - This phenomenon exhibits a more general principle known as *Lenz's Law*, which states that an induced effect will always be opposed to the cause producing it.

From: <u>http://www.williamson-labs.com/480_rlc-l.htm#top</u>

- Other References:
 - http://www.allaboutcircuits.com/vol_1/chpt_15/2.html
 - http://www.allaboutcircuits.com/vol_1/chpt_15/1.html
- Slopes:
 - The slope of a line measures the steepness of the line.
 - Slope may be described as "rise" over "run".
 - Rise means how many units you move up or down from point to point. On a graph, it would be the change in the yvalue.
 - Run on the other hand means how many units you move left or right from point to point. On a graph, it would be the change in the x-value.

• Examples of slope:

slope = 0

Graph different slopes, then the values of the slopes on another graph.

Slope Formula:

Slope Formula Given Two Points Given two points (x_1, y_1) and (x_2, y_2) $m = \frac{m e_0}{m e_1} = \frac{charge hey}{charge hex} = \frac{y_3 - y_1}{x_2 - x_1}$

Current/voltage behavior ("Ohm's Law for an Inductor"):

$$V_L = L \times \Delta I / \Delta t$$

Where,

 $\label{eq:V_L} \begin{array}{l} \text{or } \mathsf{E}_{\mathsf{L}} = \text{Instantaneous voltage across the inductor in volts} \\ \mathsf{L} = \text{Inductance in henrys} \\ \Delta I / \Delta t = \text{Instantaneous rate of current change} \end{array}$

The equation relates one variable (in this case, inductor voltage drop, V_L) to a *rate of change* of another variable (in this case, the rate of change of inductor current, $\Delta I/\Delta t$).

Circuit conditions for Example 1

Example 2:

From: http://www.allaboutcircuits.com/vol_1/chpt_15/2.html

- Resistor/Inductor (R/L) Circuit:
 - L/R Time Constant:
 - Pg 48 pract elect
 - Formula:

 $\tau = L/R$

Where:

 τ = Time in seconds for the current to increase to 63.2 % of its maximum value,

L = Inductance in henrys, and

R = Resistance in ohms

- Electricity and Electronics, Section 14.2, Inductance in AC Circuits:
 - Inductance like capacitance is an ac phenomenon.
 - Inductance is frequency sensitive.
 - Signals of different frequencies respond to inductors differently.
 - Inductors ac resistance is called inductive reactance. Another way
 of saying it is inductors oppose the flow of ac current; this
 opposition is called inductive reactance.
 - Formula:

Where:

 X_L = Inductive reactance in ohms,

f = Frequency in hertz, and

L = inductance in henrys

- Reactance increases with frequency and as the value of the inductance increases.
- The effect that an inductance has on impeding current flow is analogous to the effect of resistance on impeding current flow in a dc circuit. However, in this case inductive reactance (X_L) measured in ohms.

- Applications:
 - LC Low Pass Filter:
 - The circuit below permits lower frequencies to pass through while cutting off higher frequencies.
 - Connect a function generator to the input and an oscilloscope to the output and observe the frequency response of the circuit.
 - Plot the voltage vs. the frequency.

5-Pole Butterworth Low-Pass Filter

From: *Student Manual for The Art of Electronics* by Thomas Hayes and Paul Horowitz

- Bandpass Filter:
 - The following circuit allows a band of frequencies to pass through while suppressing frequencies below and above that band. The approach to a bandpass filters is to combine a low-pass and a high-pass filter.
 - Connect a function generator to the input and an oscilloscope to the output and observe the frequency response of the circuit.
 - Plot the voltage vs. the frequency.

Wide-Band Bandpass Filter

From Practical Electronics for Inventors by Paul Scherz