Cornerstone Electronics Technology and Robotics I Week 21 Function Generator and Oscilloscope Lesson 2

- Administration:
 - o Prayer
 - o Turn in quiz
- Function Generator:
 - A function generator is a device that can produce various patterns of voltage at a variety of frequencies and amplitudes.
 - Our function generator generates sine, triangle & square waveforms from 0.5Hz to 4MHz.
 - The basic controls on a function generator vary the amplitude and frequency of the output waveform.
 - Basic Operation: Perform Oscilloscope/Function Generator Lab 1 Basic Operation of a Function Generator.
 - Perform Oscilloscope/Function Generator Lab 2 Offset Function on the Function Generator.
- Electricity and Electronics, **Section 10.5**, Oscilloscope Continued:
 - Perform Oscilloscope/Function Generator Lab 3 Displaying a DC Voltage and Dual Display.
 - Perform Oscilloscope/Function Generator Lab 4 Other Dual Displays.

Electronics Technology and Robotics I Week 21

Oscilloscope/Function Generator Lab 1 – Basic Operation of a Function Generator

- **Purpose:** The purpose of this lab is having the student learn the basic controls of a function generator.
- Apparatus and Materials:
 - 1 Oscilloscope
 - 1 Function Generator
 - 1 BNC Male to BNC Male Cable
- Procedure:
 - Select the type of waveform by rotating the **Function Switch** (FG2). See the Figure 21 1 for the function generator control locations.
 - Select the frequency range by rotating the Frequency Range Selector Switch (FG).
 - Connect the function generator Main Output (FG6) to the CH1 Input Jack (O10) on the oscilloscope. See the Figures 21 – 2 and 21 - 3 for the oscilloscope control locations.
 - Set the oscilloscope Vertical Mode Control (O13) to CH 1.
 - Adjust the oscilloscope **CH 1 Variable Attenuator** (O11) to the full clockwise position.
 - Set the oscilloscope CH 1 Volts/Div Control (O12) to 5.
 - Set the oscilloscope CH 1 Input Coupling Switch (O9) to AC.
 - Turn on both the oscilloscope **Power Switch** (O1) and the function generator **Power Switch** (FG4).
 - Select different types of waveforms by rotating the function generator Function Switch (FG2).
 - Adjust the amplitude of the waveform by rotating the function generator Amplitude Control (FG3)
 - Adjust the frequency by changing the function generator **Frequency Control** (FG5) and **Frequency Range Selector Switch** (FG1).
 - Set the period of your waveform to 1 ms. Have the instructor verify.
 Calculate the frequency and compare it to the function generator display.

Figure 21 – 1 BK Precision 4003A Function Generator Controls for Lab 1

Figure 21 – 2 BK Precision 2120B Oscilloscope Controls for Lab 1

Figure 21 – 3 BK Precision 2125A Oscilloscope Controls for Lab 1

Electronics Technology and Robotics I Week 21 Oscilloscope Lab 2 – Offset Function on the Function Generator

- **Purpose:** The purpose of this lab is to display a dc voltage and a dual voltage trace on an oscilloscope.
- Apparatus and Materials:
 - 1 Oscilloscope
 - o 1 Function Generator
 - \circ 1 BNC Male to BNC Male Cable

• Procedure:

- Set the oscilloscope Vertical Mode Control (O13) to CH 1.
- Set the oscilloscope CH 1 Volts/Div Control (O12) to 5.
- Set the oscilloscope CH 1 Input Coupling Switch (O9) to AC.
- With the function generator, create a sinusoidal waveform with a peakto-peak voltage of 10 volts. Ask the instructor to verify your settings.
- Reset the oscilloscope CH 1 Input Coupling Switch (09) to DC.
- Pull the Offset Control on the function generator.
- Adjust the Offset Control to the and + sides and observe the waveform on the oscilloscope. You are adding a dc component to the ac signal.
- Now adjust the Offset Control until the + peak ac signal is 15 volts. Ask the instructor to verify your settings.
- Reset the oscilloscope back to **CH 1 Input Coupling Switch** (O9) to AC. Notice that the dc component is eliminated.

Electronics Technology and Robotics I Week 21 Oscilloscope Lab 3 – Displaying a DC Voltage and Dual Display

- **Purpose:** The purpose of this lab is to display a dc voltage and a dual voltage trace on an oscilloscope.
- Apparatus and Materials:
 - 1 Oscilloscope
 - 1 Function Generator
 - 1 BNC Male to BNC Male Cable
 - \circ 1 9 V Battery

• Procedure:

- Leave the function generator Main Output connected to the CH1 Input Jack on the oscilloscope.
- Set the Vertical Mode Control to Dual.
- Connect a scope probe to the CH 2 Input Jack. The Channel 2 controls are identical to the Channel 1 controls except they are to the right of the Vertical Mode Control.
- Adjust the CH 2 Variable Attenuator to the full clockwise position.
- Set the CH 2 Volts/Div Control to 5.
- Set the **CH 2 Input Coupling Switch** to DC.
- Connect the probe's ground clip to the (–) terminal of the battery.
- Set the probe slide switch to x1.
- Connect the probe tip to the (+) terminal of the battery.
- Turn on both the oscilloscope **Power Switch** and the function generator **Power Switch**.
- Adjust the CH 1 Vertical Position Control and the CH 2 Vertical Position Control such that the ac signal is above the dc signal.

Electronics Technology and Robotics I Week 21 Oscilloscope Lab 4 – Other Dual Displays

- **Purpose:** The purpose of this lab is to display circuit inputs and outputs as a dual voltage trace on an oscilloscope.
- Apparatus and Materials:
 - 1 Oscilloscope
 - 1 Function Generator
 - 1 BNC Male to BNC Male Cable
 - 1 555 Timer
 - 1 74LS04 Hex Inverter
 - o 1-74LS107 Flip-flop
 - o 1-74LS47 BCD-to-Seven-Segment Decoder
 - o 1 Jameco 97172 Common Anode 7-Segment Display
 - o 1-150 Ohm Resistor
 - o 2 1K Resistors
 - 1 10K Resistor
 - o 1-10K Potentiometer
 - o 0.1 Microfarad Capacitor
 - o 0.01 Microfarad Capacitor
- Procedure:

• Inverter Circuit:

• Wire the 74LS04 inverter circuit below.

Figure 21-4 74LS04 Inverter Circuit

 Connect the 74LS04 Pin 1 to the CH 1 Input Jack on the oscilloscope and the 74LS04 Pin 2 to the CH 2 Input Jack.

Figure 21 – 5 74LS04 Hex Inverter

$Y = \overline{A}$				
Input A	Output Y			
L,	Н			
Н	L			

H = High Logic Level (+5 V) L = Low Logic Level (0 V)

Figure 21 – 6 Inverter Truth

 Observe that the input level (Channel 1) is inverted at the output (Channel 2).

- Binary Count Circuit:
 - Wire the following dual J-K flip-flop circuit.
 - Use a function generator set at a 1 KHz square wave as the clock input.
 - Connect Q1 to CH 1 Input Jack and Q2 to CH 2 Input Jack on the oscilloscope.
 - Adjust function generator Offset Control to display the Q1 and Q2 output waveforms as shown in Figure 29 – 9 below.

Figure 21 – 7 74LS107 Flip-Flop Pin Layout and Binary Counting Circuit

Decimal	Binary
0	00
1	01
2	10
3	11

Figure 21 – 8 Counting to 0 – 3 in Binary

Figure 21 – 9 Q1 and Q2 Outputs

- Wire the circuit in Figure 21 10.
- Before connecting the binary counting circuit outputs Q1 and Q2 to the circuit, apply the HIGHs (+5V) and LOWs (ground) to pins 7,1,2 and 6 of the 74LS47N as listed in the table below.
- The 74LS47N is a BCD-to-seven-segment decoder which decodes the Q1 and Q2 signals to illuminate the numbers 0 – 3 on a seven-segment display. The table lists the input BCD code and the 7-segment display decimal output.

Figure 21 – 10 74LS47 BCD-to-Seven-Segment Decoder Circuit

BCD Code	74LS47 Pin Inputs (BCD Code)				7-Segment
	Pin 6	Pin 2	Pin 1 (Q2)	Pin 7 (Q1)	Display
	ID	IC	IB	IA	Decimal Output
0000	0	0	0	0	0
0001	0	0	0	1	1
0010	0	0	1	0	2
0011	0	0	1	1	3
0100	0	1	0	0	4
0101	0	1	0	1	5
0110	0	1	1	0	6
0111	0	1	1	1	7
1000	1	0	0	0	8
1001	1	0	0	1	9

- Now connect Q1and Q2 outputs from the counting circuit above to the decoder circuit.
- Adjust the function generator frequency (the clock) to about 1.5 Hz.