Cornerstone Electronics Technology and Robotics I Week 14 Parallel Circuits

- Administration:
 - o Prayer
- Electricity and Electronics, Section 7.1, Parallel Circuits:
 - A parallel circuit is one that has more than one pathway for the electrons to flow. Unlike series circuit, when you remove a resistor in a parallel circuit, electrons continue to flow.
 - Identifying parallel circuits: Each example below is a circuit with two parallel paths; all of the circuit configurations are electrically equivalent to each other.

Circuit 1

Circuit 2

Circuit 3

Circuit 4

- Everyday examples of parallel circuits:
 - Electrical outlets in a home See: <u>http://sol.sci.uop.edu/~jfalward/seriesparallelcircuits/seriespa</u> <u>rallelcircuits.html</u> (House wiring diagram)
 - Lights in a home
 - Electrical car functions, such as the radio, horn, starter, lights, etc.
- Voltage in a Parallel Circuit:
 - If components are connected in parallel to the source, the voltage drop across each component is the same as the source voltage.
 - Mathematically:

$$V_{T} = V_{1} = V_{2} = V_{3} = \dots = V_{N}$$

Where:

 V_T = Total voltage applied to the series circuit V_1 = Voltage drop across R_1

- V_2 = Voltage drop across R_2
- $V_3 =$ Voltage drop across R_3
- V_N = Voltage drop across R_N

N = The number of resistors in the parallel

For example, if N = 2, then the 2 resistor parallel circuit and voltmeter setup is as follows:

And the corresponding voltage drop equation is:

$$V_{\rm T} = V_1 = V_2$$

If N = 5, then the 5 resistor parallel circuit is:

And the corresponding voltage drop equation is:

$$V_T = V_1 = V_2 = V_3 = V_4 = V_5$$

 In the two circuits below, the connections in Figure 1 and Figure 2 are electrically equivalent.

Figure 1

Figure 2

 Perform Parallel Circuits Lab 1 – Voltage Drop in a Parallel Circuit

• Current in a Parallel Circuit:

- Kirchhoff's Current Law: The sum of the currents into a junction is equal to the sum of the currents out of that junction.
- Mathematically:

 $I_{\text{TOTAL in}} = I_{\text{TOTAL out}}$

Where:

 $I_{TOTAL in}$ = the sum of currents into a junction $I_{TOTAL out}$ = the sum of currents out of a junction

For Example:

Figure 3

 $I_{in(a)} + I_{in(b)} = I_{out(a)} + I_{out(b)} + I_{out(c)}$

Another way of expressing Kirchhoff's Current Law (see Figure 4):

$$I_{T} = I_{1} + I_{2} + I_{3} + \ldots + I_{N}$$

Where:

Draw a parallel resistor circuit where N = 4 and show the total current and the currents through each resistor. Assume conventional current flow.

- See applets:
 - <u>http://www.falstad.com/circuit/e-ohms.html</u>
 - <u>http://media.pearsoncmg.com/bc/aw_young_physics</u> <u>11/pt2a/Media/DCCircuits/1202DCParallel/Main.html</u> (#3, junction law)
- Parallel circuits act as current dividers. See the two examples below.

Perform Parallel Circuits Lab 2 – Kirchhoff's Current Law

• Resistance in Parallel Circuits:

- When resistors are connected in parallel circuits, the total resistance is always less than the value of the smallest resistor.
- Reciprocal Rule:
 - The reciprocal of a number is equal to 1 divided by that number, e.g., the reciprocal of 4 is 1/4, and the reciprocal of 87 is 1/87.
 - The total resistance of a parallel circuit is:

$$1/R_{T} = 1/R_{1} + 1/R_{2} + 1/R_{3} + \dots + 1/R_{N}$$

Where R_T is the total resistance and N is the total number of resistors in parallel.

• Proof: Since $I_T = I_1 + I_2 + I_3 + ... + I_N$:

And $I_T = V_S/R_T$ and $I_1 = V_S/R_1$, $I_2 = V_S/R_2$, etc., then:

 $V_{S}/R_{T} = V_{S}/R_{1} + V_{S}/R_{2} + V_{S}/R_{3} + \dots + V_{S}/R_{N}$

Now factor out V_S by dividing both sides of the equation by V_S and you arrive at:

$$1/R_T = 1/R_1 + 1/R_2 + 1/R_3 + \dots + 1/R_N$$

• Example: Find the total resistance in Circuit 5:

Circuit 5

- $\begin{array}{l} 1/R_{T} = 1/R_{1} + 1/R_{2} + 1/R_{3} \\ 1/R_{T} = 1/470 + 1/1000 + 1/2200 \\ 1/R_{T} = 0.0021 + 0.001 + 0.0004 \\ 1/R_{T} = 0.0035 \\ R_{T} = 1/0.0035 \\ R_{T} = 286 \ \Omega \end{array}$
- Special Case 1: Two resistor parallel circuit: Since 1/R_T = 1/R₁ + 1/R₂, then

$$R_T = R_1 R_2 / R_1 + R_2$$

Special Case 2: Resistors of equal value:

$$R_T = R/N$$

Where:

R = the value of each resistor (all being the same) N = the number of resistors

For Example:

$$R_T = 50 \Omega$$

How many 1 K resistors in parallel would you need to create a total resistance of 1 ohm?

- In a parallel circuit, a resistor that is much <u>smaller</u> than the other resistors dominates.
- Applet: <u>http://www.lon-capa.org/~mmp/kap20/RR506a.htm</u>
- Perform Parallel Circuits Lab 3 Total Resistance in a Parallel Circuit

• Power in a Parallel Circuit:

• The total power is equal to the sum of all the power of each resistor in the parallel circuit.

$$P_T = P_1 + P_2 + P_3 + \dots + P_N$$

Where P_T is the total power consumed in the circuit and N is the total number of resistors in parallel.

 Power is also equal to the source voltage times the total current.

$$P_T = V_T \times I_T$$

Where P_T is the total power consumed in the circuit,

 V_T is the source voltage, and

 I_T is the total current

- Electricity and Electronics, Section 7.2, Applications and Troubleshooting Parallel Circuits:
 - Solving for Resistance, Voltage, and Current in a Parallel Resistor Circuits:
 - Four equations are used to solve parallel resistor circuits. They are:

$$\begin{split} 1/R_T &= 1/R_1 + 1/R_2 + 1/R_3 + \dots + 1/R_N \\ V_T &= V_1 = V_2 = V_3 = \dots V_N \\ I_T &= I_1 + I_2 + I_3 + \dots + I_N \\ V &= I \times R \end{split}$$

 $V = I \times R$ can be applied to the total circuit ($V_T = I_T \times R_T$) and to individual resistors ($V_1 = I_1 \times R_1$).

• A table will be used to help solve our circuits. To begin, a table as shown in Table 1 corresponds to the circuit in Figure 5:

Figure 5

	Resistance	Voltage	Current
R1	R1 = 12 Ω		
R2	R2 = 8 Ω		
R3	R3 = 4 Ω		
Total		Vt = 24 V	

Table 1

• Table 2 lists all of the unknowns that will be solved.

	Resistance	Voltage	Current
R1	R1 = 12 Ω	V1	1
R2	R2 = 8 Ω	V2	12
R3	R3 = 4 Ω	V3	13
Total	Rī	Vt = 24 V	lт

• Step 1: Find V₁, V₂, and V₃.

$$V_T = V_1 = V_2 = V_3 = 24 V$$

See Table 3:

	Resistance	Voltage	Current
R1	R1 = 12 Ω	V1 = 24 V	l ₁
R2	R2 = 8 Ω	V2 = 24 V	l ₂
R3	R3 = 4 Ω	V3 = 24 V	l ₃
Total	R⊤	Vt = 24 V	lτ

Table 3

• Step 2: Find I₁, I₂, and I₃.

 $V_{1} = I_{1} \times R_{1}, \text{ therefore,}$ $I_{1} = V_{1} / R_{1}$ $I_{1} = 24 \text{ V} / 12 \Omega$ $I_{1} = 2 \text{ A}$ $I_{2} = V_{2} / R_{2}$ $I_{2} = 24 \text{ V} / 8 \Omega$ $I_{2} = 3 \text{ A}$ $I_{3} = V_{3} / R_{3}$ $I_{3} = 24 \text{ V} / 4 \Omega$ $I_{3} = 6 \text{ A}$

See Table 4:

	Resistance	Voltage	Current
R1	R1 = 12 Ω	V1 = 24 V	l1 = 2 A
R2	R2 = 8 Ω	V2 = 24 V	l2 = 3 A
R3	R3 = 4 Ω	V3 = 24 V	I3 = 6 A
Total	Rī	Vt = 24 V	lт

Table 4

Step 3: Find I_T.

See Table 5:

	Resistance	Voltage	Current
R1	R1 = 12 Ω	V1 = 24 V	l1 = 2 A
R2	R2 = 8 Ω	V2 = 24 V	l2 = 3 A
R3	R3 = 4 Ω	V3 = 24 V	I3 = 6 A
Total	Rт	Vt = 24 V	Ιτ = 11 A

Table 5

Step 5: Find R_T.

 $\begin{array}{l} 1/R_{T} = 1/R_{1} + 1/R_{2} + 1/R_{3} \\ 1/R_{T} = 1/12 + 1/8 + 1/4 \\ 1/R_{T} = 0.083 + 0.125 + 0.25 \\ 1/R_{T} = 0.458 \\ R_{T} = 1/0.458 \\ R_{T} = 2.18 \ \Omega \end{array}$

Or an alternate way:

$$\begin{split} V_T &= I_T \; x \; R_T, \text{ therefore,} \\ R_T &= V_T \; / \; I_T \\ R_T &= 24 \; V \; / \; 11 \; A \\ R_T &= 2.18 \; \Omega \end{split}$$

See Table 6:

	Resistance	Voltage	Current
R1	R1 = 12 Ω	V1 = 24 V	l1 = 2 A
R2	R2 = 8 Ω	V2 = 24 V	l2 = 3 A
R3	R3 = 4 Ω	V3 = 24 V	I3 = 6 A
Total	Rτ = 2.18 Ω	Vt = 24 V	Ιτ = 11 A

Table 6

 Since all of the resistances, voltages, and currents are solved in the present problem, the power can now be calculated.

- o Solving for Power in a Parallel Resistor Circuits:
 - Two equations are used to solve for power in a parallel resistor circuit. They are:

 $P_T = P_1 + P_2 + P_3 + \dots + P_N$ $P = V \times I$

 $P = V \times I$ can be applied to the total circuit ($P_T = V_T \times I_T$) and to individual resistors ($P_1 = V_1 \times I_1$).

• A column for power will be added to the table already used to solve our circuit. See Table 7.

	Resistance	Voltage	Current	Power
R1	R1 = 12 Ω	V1 = 24 V	l1 = 2 A	P1
R2	R2 = 8 Ω	V2 = 24 V	l2 = 3 A	P2
R3	R3 = 4 Ω	V3 = 24 V	I3 = 6 A	P3
Total	Rτ = 2.18 Ω	Vt = 24 V	Іт = 11 А	Ρт

Table 7

• Step 5: Solve for P₁, P₂, P₃, and P_T.

```
\begin{array}{l} \mathsf{P}_{1} = \mathsf{V}_{1} \times \mathsf{I}_{1} \\ \mathsf{P}_{1} = 24 \; \mathsf{V} \times 2 \; \mathsf{A} \\ \mathsf{P}_{1} = 48 \; \mathsf{W} \end{array}
\begin{array}{l} \mathsf{P}_{2} = \mathsf{V}_{2} \times \mathsf{I}_{2} \\ \mathsf{P}_{2} = 24 \; \mathsf{V} \times 3 \; \mathsf{A} \\ \mathsf{P}_{2} = 72 \; \mathsf{W} \end{array}
\begin{array}{l} \mathsf{P}_{3} = \mathsf{V}_{3} \times \mathsf{I}_{3} \\ \mathsf{P}_{3} = 24 \; \mathsf{V} \times 6 \; \mathsf{A} \\ \mathsf{P}_{3} = 144 \; \mathsf{W} \end{array}
\begin{array}{l} \mathsf{P}_{T} = \mathsf{P}_{1} + \mathsf{P}_{2} + \mathsf{P}_{3} \\ \mathsf{P}_{T} = 48 \; \mathsf{W} + 72 \; \mathsf{W} + 144 \; \mathsf{W} \\ \mathsf{P}_{T} = 264 \; \mathsf{W} \end{array}
```

See Table 8:

	Resistance	Voltage	Current	Power
R1	R1 = 12 Ω	V1 = 24 V	l1 = 2 A	P1 = 48 W
R2	R2 = 8 Ω	V2 = 24 V	l2 = 3 A	P2 = 72 W
R3	R3 = 4 Ω	V3 = 24 V	I3 = 6 A	P3 = 144 W
Total	Rτ = 2.18 Ω	Vt = 24 V	Iт = 11 А	Рт = 264 W

- Example Problem 1:
 - In following example problems, insert the known values into the tables and solve for all of the unknowns for the corresponding circuits.

	Resistance	Voltage	Current	Power
R ₁				
R_2				
Total				

o Remember:

$$1/R_{T} = 1/R_{1} + 1/R_{2} + 1/R_{3} + \dots + 1/R_{N}$$

$$V_{T} = V_{1} = V_{2} = V_{3} = \dots + V_{N}$$

$$I_{T} = I_{1} + I_{2} + I_{3} + \dots + I_{N}$$

$$V = I \times R$$

$$P = V \times I$$

• Example Problem 2:

	Resistance	Voltage	Current	Power
R ₁				
R_2				
R_3				
R_4				
Total				

• Example Problem 3:

	Resistance	Voltage	Current	Power
R ₁				
R_2				
R ₃				
Total				

• Example Problem 4:

	Resistance	Voltage	Current	Power
R ₁				
R ₂				
R ₃				
Total				

• Example Problem 5:

	Resistance	Voltage	Current	Power
R ₁				
R ₂				
R ₃				
Total				

- Solve problems 1, 2, 4, and 7 in Student Activity Sheet 7-2.
- Related Web Sites:
 - o <u>http://www.physics247.com/solved_problems/basic_circuits.php</u>
 - o http://www.acs.ryerson.ca/~kantorek/EES512/tutor2.html
 - o <u>http://people.clarkson.edu/~svoboda/eta/designLab/ParallelRDesign.ht</u> <u>ml</u>
 - o http://www.glenbrook.k12.il.us/gbssci/phys/Class/circuits/u9l4d.html
 - o http://www.allaboutcircuits.com/vol_1/chpt_5/3.html
- Suggested Home-Study Student Activity Sheets 7.1 and 7.2

- Example Problem Solutions:
 - Example Problem 1:

	Resistance	Voltage	Current	Power
R ₁	R1 = 40 Ω	V1 = 24 V	l1 = 0.6 A	P1 = 14.4 W
R ₂	R2 = 60 Ω	V2 = 24 V	l2 = 0.4 A	P2 = 9.6 W
Total	R τ = 24 Ω	VT = 24 V	Ιτ = 1.0 A	Pτ = 24.0 W

o Example Problem 2:

	Resistance	Voltage	Current	Power
R ₁	R1 = 100 Ω	V1 = 24 V	l1 = 0.24 A	P1 = 5.76 W
R ₂	R2 = 100 Ω	V2 = 24 V	l2 = 0.24 A	P2 = 5.76 W
R ₃	R3 = 100 Ω	V3 = 24 V	I3 = 0.24 A	P3 = 5.76 W
R ₄	R4 = 100 Ω	V4 = 24 V	l4 = 0.24 A	P4 = 5.76 W
Total	Rτ = 25 Ω	VT = 24 V	Iτ = 0.96 A	Pτ = 23.04 W

• Example Problem 3:

	Resistance	Voltage	Current	Power
R ₁	R1 = 1K Ω	V1 = 12 V	l1 = 0.012 A	P1 = 0.144 W
R ₂	R2 = 2.2K Ω	V2 = 12 V	l2 = 0.0055 A	P2 = 0.066 W
R ₃	R3 = 4.7K Ω	V3 = 12 V	I3 = 0.0025 A	P3 = 0.03 W
Total	Rτ = 600 Ω	VT = 12 V	I _τ = 0.020 A	Рт = 0.24 W

• Example Problem 4:

	Resistance	Voltage	Current	Power
R ₁	R1 = 100 Ω	V1 = 9V	l1 = 0.09 A	P1 = 0.81 W
R ₂	R2 = 484 Ω	V2 = 9 V	l2 = 0.019 A	P2 = 0.171 W
R ₃	R3 = 100 Ω	V3 = 9 V	I3 = 0.09 A	P3 = 0.81 W
Total	Rτ = 45 Ω	V _T = 9 V	Iτ = 0.20 A	Pτ = 1.79 W

• Example Problem 5:

	Resistance	Voltage	Current	Power
R ₁	R1 = 47 Ω	V1 = 12 V	l1 = 0.255 A	P1 = 3.06 W
R ₂	R2 = 68 Ω	V2 = 12 V	l2 = 0.176 A	P2 = 2.11 W
R ₃	R3 = 82 Ω	V3 = 12 V	I3 = 0.146 A	P3 = 1.75 W
Total	Rτ = 20.7 Ω	V _T = 12 V	Iτ = 0.577 A	Pτ = 6.92 W

Electronics Technology and Robotics I Week 14 Parallel Circuits Lab 1 – Voltage Drop in a Parallel Circuit

- **Purpose:** The purpose of this lab is to experimentally verify that the voltage drops across parallel resistors are equal.
- Apparatus and Materials:
 - o 1 Solderless Breadboard with 9 V Power Supply
 - 1 Digital Multimeter
 - o 1−1 K Ohm Resistor
 - o 2-2.2 K Ohm Resistors
 - \circ 1 4.7 K Ohm Resistor

• Procedure:

- Wire the following circuit
- $\circ~$ Measure and record V_AE, V_BF, V_CG, and V_DH.

• Results:

Points	Voltage Drop
A - E	
B - F	
C-G	
D - H	

• Conclusions:

 $\circ~$ How do the voltage drops $V_{AE},~V_{BF},~V_{CG},$ and V_{DH} relate to each other?

Electronics Technology and Robotics I Week 14 Parallel Circuits Lab 2 – Kirchhoff's Current Law

- **Purpose:** The purpose of this lab is to experimentally verify Kirchhoff's Current Law.
- Apparatus and Materials:
 - 1 Solderless Breadboard with 9 V Power Supply
 - 4 Digital Multimeters
 - o 4 Switches
 - o 2-220 Ohm Resistors
 - 1 330 Ohm Resistor
 - o 1-470 Ohm Resistor
- Procedure:
 - In the following circuit, simultaneously measure the current at points A, B, C, and D. With all switches closed, see if $I_A = I_B + I_C + I_D$. Record the results. Measure and record the currents of the other combinations in the table using open and closed switches.
 - Verify Kirchhoff's Current Law for each case.

Note how the current through R_1 changes as resistors R_2 , R_3 , and R_4 are added or removed from the circuit.

• Results:

Current In	Current(s) Out			Total of Currents Out
l _A (mA)	l _B (mA)	l _c (mA)	I _D (mA)	Total (mA)
				$I_{B} + I_{C} + I_{D} =$
				I _B + I _C =
				I _B + I _D =
				I _C + I _D =
				I _В =
				I _C =
				I _D =

- Conclusions:
 - Does the experiment verify Kirchhoff's Current Law? Explain.

Electronics Technology and Robotics I Week 14 Parallel Circuits Lab 3 – Total Resistance in a Parallel Circuit

- **Purpose:** The purpose of this lab is to experimentally verify the reciprocal rule for total resistance of a parallel circuit.
- Apparatus and Materials:
 - 1 Solderless Breadboard
 - 1 Digital Multimeter
 - 1 100 Ohm Resistor
 - o 1-220 Ohm Resistor
 - 1 1K Resistor
 - o 3-1.5K Resistor
- Procedure:
 - Resistors in Parallel:
 - Wire the following circuit below then calculate and measure/record R_T.

- Two Parallel Resistors:
 - Wire the following circuit below then calculate and measure/record R_T.

- Equal Resistors:
 - Wire the following circuit below then calculate and measure/record R_T.

- Results:
 - o Resistors in Parallel:

R _T Calculated	R_T Measured

o Two Parallel Resistors:

R _T Calculated	R_T Measured

o Equal Resistors:

R _T Calculated	R_T Measured

- Conclusions: In each case, evaluate how well the R_T calculated matched the R_T measured. Explain any discrepancies.
 - o Resistors in Parallel:

 $1/R_{T} = 1/R_{1} + 1/R_{2} + 1/R_{3} + \dots + 1/R_{N}$

o Two Parallel Resistors:

$$R_T = R_1 R_2 / R_1 + R_2$$

• Equal Resistors:

$$R_T = R/N$$