Cornerstone Electronics Technology and Robotics I Week 14

Parallel Circuits

- Administration:
o Prayer
- Electricity and Electronics, Section 7.1, Parallel Circuits:
o A parallel circuit is one that has more than one pathway for the electrons to flow. Unlike series circuit, when you remove a resistor in a parallel circuit, electrons continue to flow.
o Identifying parallel circuits: Each example below is a circuit with two parallel paths; all of the circuit configurations are electrically equivalent to each other.

o Everyday examples of parallel circuits:
- Electrical outlets in a home See: http://sol.sci.uop.edu/~jfalward/seriesparallelcircuits/seriespa rallelcircuits.html (House wiring diagram)
- Lights in a home
- Electrical car functions, such as the radio, horn, starter, lights, etc.
o Voltage in a Parallel Circuit:
- If components are connected in parallel to the source, the voltage drop across each component is the same as the source voltage.
- Mathematically:

$$
V_{T}=V_{1}=V_{2}=V_{3}=\ldots . .=V_{N}
$$

Where:
$V_{T}=$ Total voltage applied to the series circuit
$V_{1}=$ Voltage drop across R_{1}
$V_{2}=$ Voltage drop across R_{2}
$V_{3}=$ Voltage drop across R_{3}
$V_{N}=$ Voltage drop across R_{N}
$N=$ The number of resistors in the parallel

For example, if $\mathrm{N}=2$, then the 2 resistor parallel circuit and voltmeter setup is as follows:

And the corresponding voltage drop equation is:

$$
V_{T}=V_{1}=V_{2}
$$

If $N=5$, then the 5 resistor parallel circuit is:

And the corresponding voltage drop equation is:

$$
\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}_{4}=\mathrm{V}_{5}
$$

- In the two circuits below, the connections in Figure 1 and Figure 2 are electrically equivalent.

Figure 1

Figure 2

- Perform Parallel Circuits Lab 1 - Voltage Drop in a Parallel Circuit

o Current in a Parallel Circuit:

- Kirchhoff's Current Law: The sum of the currents into a junction is equal to the sum of the currents out of that junction.
- Mathematically:
$I_{\text {TOTAL in }}=I_{\text {TOTAL out }}$
Where:
$I_{\text {TOTAL in }}=$ the sum of currents into a junction $\mathrm{I}_{\text {TOTAL out }}=$ the sum of currents out of a junction

For Example:

Figure 3

$$
I_{\text {in(a) }}+I_{\text {in(b) }}=I_{\text {out }(\mathrm{a})}+I_{\text {out }(\mathrm{b})}+I_{\text {out }(\mathrm{c})}
$$

$$
I_{T}=I_{1}+I_{2}+I_{3}+\ldots+I_{N}
$$

Where:
$I_{T}=$ Total current into a parallel resistor circuit
$\mathrm{I}_{1}=$ Current through R_{1}
$\mathrm{I}_{2}=$ Current through R_{2}
$I_{3}=$ Current through R_{3}
$\mathrm{I}_{\mathrm{N}}=$ Current through R_{N}

Figure 4
Draw a parallel resistor circuit where $\mathrm{N}=4$ and show the total current and the currents through each resistor. Assume conventional current flow.

- See applets:
- http://www.falstad.com/circuit/e-ohms.html
- http://media.pearsoncmg.com/bc/aw young physics 11/pt2a/Media/DCCircuits/1202DCParallel/Main.html (\#3, junction law)
- Parallel circuits act as current dividers. See the two examples below.

Example 1

Example 2

- Perform Parallel Circuits Lab 2 - Kirchhoff's Current Law
o Resistance in Parallel Circuits:
- When resistors are connected in parallel circuits, the total resistance is always less than the value of the smallest resistor.
- Reciprocal Rule:
- The reciprocal of a number is equal to 1 divided by that number, e.g., the reciprocal of 4 is $1 / 4$, and the reciprocal of 87 is $1 / 87$.
- The total resistance of a parallel circuit is:
$1 / R_{T}=1 / R_{1}+1 / R_{2}+1 / R_{3}+\ldots \ldots \ldots+1 / R_{N}$
Where R_{T} is the total resistance and N is the total number of resistors in parallel.
- Proof: Since $I_{T}=I_{1}+I_{2}+I_{3}+\ldots+I_{N}$:

And $\mathrm{I}_{\mathrm{T}}=\mathrm{V}_{\mathrm{S}} / \mathrm{R}_{\mathrm{T}}$ and $\mathrm{I}_{1}=\mathrm{V}_{\mathrm{S}} / \mathrm{R}_{1}, \mathrm{I}_{2}=\mathrm{V}_{\mathrm{S}} / \mathrm{R}_{2}$, etc., then:

$$
V_{\mathrm{S}} / R_{\mathrm{T}}=\mathrm{V}_{\mathrm{S}} / \mathrm{R}_{1}+\mathrm{V}_{\mathrm{S}} / \mathrm{R}_{2}+\mathrm{V}_{\mathrm{S}} / R_{3}+\ldots . .+\mathrm{V}_{\mathrm{S}} / R_{\mathrm{N}}
$$

Now factor out V_{S} by dividing both sides of the equation by V_{S} and you arrive at:

$$
1 / R_{T}=1 / R_{1}+1 / R_{2}+1 / R_{3}+\ldots . .+1 / R_{N}
$$

- Example: Find the total resistance in Circuit 5:

Circuit 5

$$
\begin{aligned}
& 1 / \mathrm{R}_{\mathrm{T}}=1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3} \\
& 1 / \mathrm{R}_{\mathrm{T}}=1 / 470+1 / 1000+1 / 2200 \\
& 1 / \mathrm{R}_{\mathrm{T}}=0.0021+0.001+0.0004 \\
& 1 / \mathrm{R}_{\mathrm{T}}=0.0035 \\
& \mathrm{R}_{\mathrm{T}}=1 / 0.0035 \\
& \mathrm{R}_{\mathrm{T}}=286 \Omega
\end{aligned}
$$

- Special Case 1: Two resistor parallel circuit: Since $1 / \mathrm{R}_{\mathrm{T}}=$ $1 / R_{1}+1 / R_{2}$, then

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1} \mathrm{R}_{2} / \mathrm{R}_{1}+\mathrm{R}_{2}
$$

- Special Case 2: Resistors of equal value:

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{R} / \mathrm{N}
$$

Where:

$$
\begin{aligned}
& R=\text { the value of each resistor (all being the same) } \\
& N=\text { the number of resistors }
\end{aligned}
$$

For Example:

. . . is equivalent to

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{R} / \mathrm{N}
$$

$$
\mathrm{R}_{\mathrm{T}}=100 / 2
$$

$$
\mathrm{R}_{\mathrm{T}}=50 \Omega
$$

How many 1 K resistors in parallel would you need to create a total resistance of 1 ohm?

- In a parallel circuit, a resistor that is much smaller than the other resistors dominates.
- Applet: http://www.lon-capa.org/~mmp/kap20/RR506a.htm
- Perform Parallel Circuits Lab 3 - Total Resistance in a Parallel Circuit

o Power in a Parallel Circuit:

- The total power is equal to the sum of all the power of each resistor in the parallel circuit.

$$
P_{T}=P_{1}+P_{2}+P_{3}+\ldots \ldots+P_{N}
$$

Where P_{T} is the total power consumed in the circuit and N is the total number of resistors in parallel.

- Power is also equal to the source voltage times the total current.

$$
P_{T}=V_{T} \times I_{T}
$$

Where P_{T} is the total power consumed in the circuit, V_{T} is the source voltage, and I_{T} is the total current

- Electricity and Electronics, Section 7.2, Applications and Troubleshooting Parallel Circuits:
o Solving for Resistance, Voltage, and Current in a Parallel Resistor Circuits:
- Four equations are used to solve parallel resistor circuits. They are:
$1 / R_{T}=1 / R_{1}+1 / R_{2}+1 / R_{3}+\ldots \ldots \ldots+1 / R_{N}$
$\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\ldots . . \mathrm{V}_{\mathrm{N}}$
$I_{T}=I_{1}+I_{2}+I_{3}+\ldots+I_{N}$
$\mathrm{V}=\mathrm{I} \times \mathrm{R}$
$\mathrm{V}=\mathrm{I} \times \mathrm{R}$ can be applied to the total circuit $\left(\mathrm{V}_{\mathrm{T}}=\mathrm{I}_{\mathrm{T}} \times \mathrm{R}_{\mathrm{T}}\right)$ and to individual resistors $\left(V_{1}=I_{1} \times R_{1}\right)$.
- A table will be used to help solve our circuits. To begin, a table as shown in Table 1 corresponds to the circuit in Figure 5:

Figure 5

	Resistance	Voltage	Current
R1	$\mathrm{R} 1=12 \Omega$		
R2	$\mathrm{R} 2=8 \Omega$		
R3	$\mathrm{R} 3=4 \Omega$		
Total		$\mathrm{V}_{\mathrm{T}}=24 \mathrm{~V}$	

Table 1

- Table 2 lists all of the unknowns that will be solved.

	Resistance	Voltage	Current
R 1	$\mathrm{R} 1=12 \Omega$	V 1	I 1
R 2	$\mathrm{R} 2=8 \Omega$	V 2	I 2
R 3	$\mathrm{R} 3=4 \Omega$	V 3	I 3
Total	R_{T}	$\mathrm{V}_{\mathrm{T}}=24 \mathrm{~V}$	I

Table 2

- Step 1: Find $\mathrm{V}_{1}, \mathrm{~V}_{2}$, and V_{3}.

$$
V_{T}=V_{1}=V_{2}=V_{3}=24 \mathrm{~V}
$$

See Table 3:

	Resistance	Voltage	Current
R 1	$\mathrm{R} 1=12 \Omega$	$\mathrm{~V} 1=24 \mathrm{~V}$	I_{1}
R 2	$\mathrm{R} 2=8 \Omega$	$\mathrm{~V} 2=24 \mathrm{~V}$	I_{2}
R 3	$\mathrm{R} 3=4 \Omega$	$\mathrm{~V} 3=24 \mathrm{~V}$	I_{3}
Total	R T	$\mathrm{V}_{\mathrm{T}}=24 \mathrm{~V}$	I_{T}

Table 3

- Step 2: Find I_{1}, I_{2}, and I_{3}.

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathrm{I}_{1} \times \mathrm{R}_{1}, \text { therefore, } \\
& \mathrm{I}_{1}=\mathrm{V}_{1} / \mathrm{R}_{1} \\
& \mathrm{I}_{1}=24 \mathrm{~V} / 12 \Omega \\
& \mathrm{I}_{1}=2 \mathrm{~A} \\
& \\
& \mathrm{I}_{2}=\mathrm{V}_{2} / \mathrm{R}_{2} \\
& \mathrm{I}_{2}=24 \mathrm{~V} / 8 \Omega \\
& \mathrm{I}_{2}=3 \mathrm{~A} \\
& \\
& \mathrm{I}_{3}=\mathrm{V}_{3} / \mathrm{R}_{3} \\
& \mathrm{I}_{3}=24 \mathrm{~V} / 4 \Omega \\
& \mathrm{I}_{3}=6 \mathrm{~A}
\end{aligned}
$$

See Table 4:

	Resistance	Voltage	Current
R 1	$\mathrm{R} 1=12 \Omega$	$\mathrm{~V} 1=24 \mathrm{~V}$	$\mathrm{I} 1=2 \mathrm{~A}$
R 2	$\mathrm{R} 2=8 \Omega$	$\mathrm{~V} 2=24 \mathrm{~V}$	$\mathrm{I} 2=3 \mathrm{~A}$
R 3	$\mathrm{R} 3=4 \Omega$	$\mathrm{~V} 3=24 \mathrm{~V}$	$\mathrm{I} 3=6 \mathrm{~A}$
Total	R_{T}	$\mathrm{V}_{\mathrm{T}}=24 \mathrm{~V}$	I_{T}

Table 4

- Step 3: Find I_{T}.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3} \\
& \mathrm{I}_{\mathrm{T}}=2 \mathrm{~A}+3 \mathrm{~A}+6 \mathrm{~A} \\
& \mathrm{I}_{\mathrm{T}}=11 \mathrm{~A}
\end{aligned}
$$

See Table 5:

	Resistance	Voltage	Current
R 1	$\mathrm{R} 1=12 \Omega$	$\mathrm{~V} 1=24 \mathrm{~V}$	$\mathrm{I} 1=2 \mathrm{~A}$
R 2	$\mathrm{R} 2=8 \Omega$	$\mathrm{~V} 2=24 \mathrm{~V}$	$\mathrm{I} 2=3 \mathrm{~A}$
R 3	$\mathrm{R} 3=4 \Omega$	$\mathrm{~V} 3=24 \mathrm{~V}$	$\mathrm{I} 3=6 \mathrm{~A}$
Total	RT	$\mathrm{V}_{\mathrm{T}}=24 \mathrm{~V}$	$\mathrm{I}_{\mathrm{T}}=11 \mathrm{~A}$

Table 5

- Step 5: Find R_{T}.

$$
\begin{aligned}
1 / R_{T} & =1 / R_{1}+1 / R_{2}+1 / R_{3} \\
1 / R_{T} & =1 / 12+1 / 8+1 / 4 \\
1 / R_{T} & =0.083+0.125+0.25 \\
1 / R_{T} & =0.458 \\
R_{T} & =1 / 0.458 \\
R_{T} & =2.18 \Omega
\end{aligned}
$$

Or an alternate way:

$$
\begin{aligned}
& \mathrm{V}_{T}=\mathrm{I}_{T} \times \mathrm{R}_{\mathrm{T}} \text {, therefore, } \\
& \mathrm{R}_{T}=\mathrm{V}_{T} / \mathrm{I}_{T} \\
& \mathrm{R}_{T}=24 \mathrm{~V} / 11 \mathrm{~A} \\
& \mathrm{R}_{\mathrm{T}}=2.18 \Omega
\end{aligned}
$$

See Table 6:

	Resistance	Voltage	Current
R 1	$\mathrm{R} 1=12 \Omega$	$\mathrm{~V} 1=24 \mathrm{~V}$	$\mathrm{I} 1=2 \mathrm{~A}$
R 2	$\mathrm{R} 2=8 \Omega$	$\mathrm{~V} 2=24 \mathrm{~V}$	$\mathrm{I} 2=3 \mathrm{~A}$
R 3	$\mathrm{R} 3=4 \Omega$	$\mathrm{~V} 3=24 \mathrm{~V}$	$\mathrm{I} 3=6 \mathrm{~A}$
Total	$\mathrm{R}_{\mathrm{T}}=2.18 \Omega$	$\mathrm{~V}_{\mathrm{T}}=24 \mathrm{~V}$	$\mathrm{I}=11 \mathrm{~A}$

Table 6

- Since all of the resistances, voltages, and currents are solved in the present problem, the power can now be calculated.
- Two equations are used to solve for power in a parallel resistor circuit. They are:
$P_{T}=P_{1}+P_{2}+P_{3}+\ldots+P_{N}$
$P=V \mathrm{VII}$
$P=V \times I$ can be applied to the total circuit $\left(P_{T}=V_{T} \times I_{T}\right)$ and to individual resistors ($\mathrm{P}_{1}=\mathrm{V}_{1} \times \mathrm{I}_{1}$).
- A column for power will be added to the table already used to solve our circuit. See Table 7.

	Resistance	Voltage	Current	Power
R 1	$\mathrm{R} 1=12 \Omega$	$\mathrm{~V} 1=24 \mathrm{~V}$	$\mathrm{I} 1=2 \mathrm{~A}$	P 1
R 2	$\mathrm{R} 2=8 \Omega$	$\mathrm{~V} 2=24 \mathrm{~V}$	$\mathrm{I} 2=3 \mathrm{~A}$	P 2
R 3	$\mathrm{R} 3=4 \Omega$	$\mathrm{~V} 3=24 \mathrm{~V}$	$\mathrm{I} 3=6 \mathrm{~A}$	P 3
Total	$\mathrm{RT}=2.18 \Omega$	$\mathrm{~V}_{\mathrm{T}}=24 \mathrm{~V}$	$\mathrm{I}_{\mathrm{T}}=11 \mathrm{~A}$	P_{T}

Table 7

- Step 5: Solve for $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$, and P_{T}.

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{V}_{1} \times \mathrm{I}_{1} \\
& \mathrm{P}_{1}=24 \mathrm{~V} \times 2 \mathrm{~A} \\
& \mathrm{P}_{1}=48 \mathrm{~W} \\
& \\
& \mathrm{P}_{2}=\mathrm{V}_{2} \times \mathrm{I}_{2} \\
& \mathrm{P}_{2}=24 \mathrm{~V} \times 3 \mathrm{~A} \\
& \mathrm{P}_{2}=72 \mathrm{~W} \\
& \mathrm{P}_{3}=\mathrm{V}_{3} \times \mathrm{I}_{3} \\
& \mathrm{P}_{3}=24 \mathrm{~V} \times 6 \mathrm{~A} \\
& \mathrm{P}_{3}=144 \mathrm{~W} \\
& \\
& \mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3} \\
& \mathrm{P}_{\mathrm{T}}=48 \mathrm{~W}+72 \mathrm{~W}+144 \mathrm{~W} \\
& \mathrm{P}_{\mathrm{T}}=264 \mathrm{~W}
\end{aligned}
$$

See Table 8:

	Resistance	Voltage	Current	Power
R 1	$\mathrm{R} 1=12 \Omega$	$\mathrm{~V} 1=24 \mathrm{~V}$	$\mathrm{I} 1=2 \mathrm{~A}$	$\mathrm{P} 1=48 \mathrm{~W}$
R 2	$\mathrm{R} 2=8 \Omega$	$\mathrm{~V} 2=24 \mathrm{~V}$	$\mathrm{I} 2=3 \mathrm{~A}$	$\mathrm{P} 2=72 \mathrm{~W}$
R3	$\mathrm{R} 3=4 \Omega$	$\mathrm{~V} 3=24 \mathrm{~V}$	$\mathrm{I} 3=6 \mathrm{~A}$	$\mathrm{P} 3=144 \mathrm{~W}$
Total	$\mathrm{R}=2.18 \Omega$	$\mathrm{~V}=24 \mathrm{~V}$	$\mathrm{I}=11 \mathrm{~A}$	$\mathrm{PT}=264 \mathrm{~W}$

Table 8
o Example Problem 1:

- In following example problems, insert the known values into the tables and solve for all of the unknowns for the corresponding circuits.

	Resistance	Voltage	Current	Power
R_{1}				
R_{2}				
Total				

o Remember:

$$
\begin{aligned}
& 1 / R_{T}=1 / R_{1}+1 / R_{2}+1 / R_{3}+\ldots \ldots \ldots+1 / R_{N} \\
& V_{T}=V_{1}=V_{2}=V_{3}=\ldots . V_{N} \\
& I_{T}=I_{1}+I_{2}+I_{3}+\ldots+I_{N} \\
& V=I \times R \\
& P=V \times I
\end{aligned}
$$

o Example Problem 2:

	Resistance	Voltage	Current	Power
R_{1}				
R_{2}				
R_{3}				
R_{4}				
Total				

o Example Problem 3:

	Resistance	Voltage	Current	Power
R_{1}				
R_{2}				
R_{3}				
Total				

o Example Problem 4:

	Resistance	Voltage	Current	Power
R_{1}				
R_{2}				
R_{3}				
Total				

o Example Problem 5:

	Resistance	Voltage	Current	Power
R_{1}				
R_{2}				
R_{3}				
Total				

o Solve problems 1, 2, 4, and 7 in Student Activity Sheet 7-2.

- Related Web Sites:
o http://www.physics247.com/solved problems/basic circuits.php
o http://www.acs.ryerson.ca/~kantorek/EES512/tutor2.html
0 http://people.clarkson.edu/~svoboda/eta/designLab/ParalleIRDesign.ht ml
o http://www.glenbrook.k12.il.us/gbssci/phys/Class/circuits/u9l4d.html
o http://www.allaboutcircuits.com/vol 1/chpt 5/3.html
- Suggested Home-Study Student Activity Sheets 7.1 and 7.2
- Example Problem Solutions:
o Example Problem 1:

	Resistance	Voltage	Current	Power
R_{1}	$\mathrm{R} 1=40 \Omega$	$\mathrm{~V} 1=24 \mathrm{~V}$	$\mathrm{I} 1=0.6 \mathrm{~A}$	$\mathrm{P} 1=14.4 \mathrm{~W}$
R_{2}	$\mathrm{R} 2=60 \Omega$	$\mathrm{~V} 2=24 \mathrm{~V}$	$\mathrm{I} 2=0.4 \mathrm{~A}$	$\mathrm{P} 2=9.6 \mathrm{~W}$
Total	$\mathrm{R}_{\mathrm{T}}=24 \Omega$	$\mathrm{~V}_{\mathrm{T}}=24 \mathrm{~V}$	$\mathrm{I}_{\mathrm{T}}=1.0 \mathrm{~A}$	$\mathrm{P}_{\mathrm{T}}=24.0 \mathrm{~W}$

o Example Problem 2:

	Resistance	Voltage	Current	Power
R_{1}	$\mathrm{R} 1=100 \Omega$	$\mathrm{~V} 1=24 \mathrm{~V}$	$\mathrm{I} 1=0.24 \mathrm{~A}$	$\mathrm{P} 1=5.76 \mathrm{~W}$
R_{2}	$\mathrm{R} 2=100 \Omega$	$\mathrm{~V} 2=24 \mathrm{~V}$	$\mathrm{I} 2=0.24 \mathrm{~A}$	$\mathrm{P} 2=5.76 \mathrm{~W}$
R_{3}	$\mathrm{R} 3=100 \Omega$	$\mathrm{~V} 3=24 \mathrm{~V}$	$\mathrm{I} 3=0.24 \mathrm{~A}$	$\mathrm{P} 3=5.76 \mathrm{~W}$
R_{4}	$\mathrm{R} 4=100 \Omega$	$\mathrm{~V} 4=24 \mathrm{~V}$	$\mathrm{I} 4=0.24 \mathrm{~A}$	$\mathrm{P} 4=5.76 \mathrm{~W}$
Total	$\mathrm{R}_{\mathrm{T}}=25 \Omega$	$\mathrm{~V}_{\mathrm{T}}=24 \mathrm{~V}$	$\mathrm{I}_{\mathrm{T}}=0.96 \mathrm{~A}$	$\mathrm{P}_{\mathrm{T}}=23.04 \mathrm{~W}$

o Example Problem 3:

	Resistance	Voltage	Current	Power
R_{1}	$\mathrm{R} 1=1 \mathrm{~K} \Omega$	$\mathrm{~V} 1=12 \mathrm{~V}$	$\mathrm{I} 1=0.012 \mathrm{~A}$	$\mathrm{P} 1=0.144 \mathrm{~W}$
R_{2}	$\mathrm{R} 2=2.2 \mathrm{~K} \Omega$	$\mathrm{~V} 2=12 \mathrm{~V}$	$\mathrm{I} 2=0.0055 \mathrm{~A}$	$\mathrm{P} 2=0.066 \mathrm{~W}$
R_{3}	$\mathrm{R} 3=4.7 \mathrm{~K} \Omega$	$\mathrm{~V} 3=12 \mathrm{~V}$	$\mathrm{I} 3=0.0025 \mathrm{~A}$	$\mathrm{P} 3=0.03 \mathrm{~W}$
Total	$\mathrm{R}_{\mathrm{T}}=600 \Omega$	$\mathrm{~V}_{\mathrm{T}}=12 \mathrm{~V}$	$\mathrm{I}_{\mathrm{T}}=0.020 \mathrm{~A}$	$\mathrm{P}_{\mathrm{T}}=0.24 \mathrm{~W}$

o Example Problem 4:

	Resistance	Voltage	Current	Power
R_{1}	$\mathrm{R} 1=100 \Omega$	$\mathrm{~V} 1=9 \mathrm{~V}$	$\mathrm{I} 1=0.09 \mathrm{~A}$	$\mathrm{P} 1=0.81 \mathrm{~W}$
R_{2}	$\mathrm{R} 2=484 \Omega$	$\mathrm{~V} 2=9 \mathrm{~V}$	$\mathrm{I} 2=0.019 \mathrm{~A}$	$\mathrm{P} 2=0.171 \mathrm{~W}$
R_{3}	$\mathrm{R} 3=100 \Omega$	$\mathrm{~V} 3=9 \mathrm{~V}$	$\mathrm{I} 3=0.09 \mathrm{~A}$	$\mathrm{P} 3=0.81 \mathrm{~W}$
Total	$\mathrm{R}_{\mathrm{T}}=45 \Omega$	$\mathrm{~V}_{\mathrm{T}}=9 \mathrm{~V}$	$\mathrm{I}_{\mathrm{T}}=0.20 \mathrm{~A}$	$\mathrm{P}_{\mathrm{T}}=1.79 \mathrm{~W}$

o Example Problem 5:

	Resistance	Voltage	Current	Power
R_{1}	$\mathrm{R} 1=47 \Omega$	$\mathrm{~V} 1=12 \mathrm{~V}$	$\mathrm{I} 1=0.255 \mathrm{~A}$	$\mathrm{P} 1=3.06 \mathrm{~W}$
R_{2}	$\mathrm{R} 2=68 \Omega$	$\mathrm{~V} 2=12 \mathrm{~V}$	$\mathrm{I} 2=0.176 \mathrm{~A}$	$\mathrm{P} 2=2.11 \mathrm{~W}$
R_{3}	$\mathrm{R} 3=82 \Omega$	$\mathrm{~V} 3=12 \mathrm{~V}$	$\mathrm{I} 3=0.146 \mathrm{~A}$	$\mathrm{P} 3=1.75 \mathrm{~W}$
Total	$\mathrm{R}_{\mathrm{T}}=20.7 \Omega$	$\mathrm{~V}_{\mathrm{T}}=12 \mathrm{~V}$	$\mathrm{I}_{\mathrm{T}}=0.577 \mathrm{~A}$	$\mathrm{P}_{\mathrm{T}}=6.92 \mathrm{~W}$

Electronics Technology and Robotics I Week 14
 Parallel Circuits Lab 1 - Voltage Drop in a Parallel Circuit

- Purpose: The purpose of this lab is to experimentally verify that the voltage drops across parallel resistors are equal.
- Apparatus and Materials:
o 1 - Solderless Breadboard with 9 V Power Supply
o 1 - Digital Multimeter
o 1-1 K Ohm Resistor
o 2-2.2 K Ohm Resistors
o 1-4.7 K Ohm Resistor
- Procedure:
o Wire the following circuit
0 Measure and record $\mathrm{V}_{\mathrm{AE}}, \mathrm{V}_{\mathrm{BF}}, \mathrm{V}_{\mathrm{CG}}$, and V_{DH}.

- Results:

Points	Voltage Drop
$A-E$	
$B-F$	
$C-G$	
$D-H$	

- Conclusions:

0 How do the voltage drops $\mathrm{V}_{\mathrm{AE}}, \mathrm{V}_{\mathrm{BF}}, \mathrm{V}_{\mathrm{CG}}$, and V_{DH} relate to each other?

Electronics Technology and Robotics I Week 14

Parallel Circuits Lab 2 - Kirchhoff's Current Law

- Purpose: The purpose of this lab is to experimentally verify Kirchhoff's Current Law.
- Apparatus and Materials:
o 1 - Solderless Breadboard with 9 V Power Supply
o 4-Digital Multimeters
o 4-Switches
o 2-220 Ohm Resistors
o 1-330 Ohm Resistor
o 1-470 Ohm Resistor
- Procedure:
- In the following circuit, simultaneously measure the current at points A, B, C, and D. With all switches closed, see if $I_{A}=$ $I_{B}+I_{C}+I_{D}$. Record the results. Measure and record the currents of the other combinations in the table using open and closed switches.
- Verify Kirchhoff's Current Law for each case.

Note how the current through R_{1} changes as resistors $\mathrm{R}_{2}, \mathrm{R}_{3}$, and R_{4} are added or removed from the circuit.

- Results:

Current In	Current(s) Out			Total of Currents Out
$\mathrm{I}_{\mathrm{A}}(\mathrm{mA})$	$\mathrm{I}_{\mathrm{B}}(\mathrm{mA})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$	$\mathrm{I}_{\mathrm{D}}(\mathrm{mA})$	Total (mA)
				$\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{D}}=$
				$\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}=$
				$\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{D}}=$
				$\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{D}}=$
				$\mathrm{I}_{\mathrm{B}}=$
				$\mathrm{I}_{\mathrm{C}}=$
				$\mathrm{I}_{\mathrm{D}}=$

- Conclusions:
o Does the experiment verify Kirchhoff's Current Law? Explain.

Electronics Technology and Robotics I Week 14

Parallel Circuits Lab 3 - Total Resistance in a Parallel Circuit

- Purpose: The purpose of this lab is to experimentally verify the reciprocal rule for total resistance of a parallel circuit.
- Apparatus and Materials:
o 1 - Solderless Breadboard
o 1 - Digital Multimeter
o 1-100 Ohm Resistor
o 1-220 Ohm Resistor
o 1-1K Resistor
o 3-1.5K Resistor
- Procedure:
o Resistors in Parallel:
- Wire the following circuit below then calculate and measure/record R_{T}.

o Two Parallel Resistors:
- Wire the following circuit below then calculate and measure/record R_{T}.

o Equal Resistors:
- Wire the following circuit below then calculate and measure/record R_{T}.

- Results:
o Resistors in Parallel:

R_{T} Calculated	R_{T} Measured

o Two Parallel Resistors:

R_{T} Calculated	R_{T} Measured

o Equal Resistors:

R_{T} Calculated	R_{T} Measured

- Conclusions: In each case, evaluate how well the R_{T} calculated matched the R_{T} measured. Explain any discrepancies.
o Resistors in Parallel:

$$
1 / R_{T}=1 / R_{1}+1 / R_{2}+1 / R_{3}+\ldots \ldots \ldots . .+1 / R_{N}
$$

o Two Parallel Resistors:

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1} \mathrm{R}_{2} / \mathrm{R}_{1}+\mathrm{R}_{2}
$$

o Equal Resistors:

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{R} / \mathrm{N}
$$

