```
'-----Title-----
' File.....DS1620_3_heater.pbp
' Started....5/27/08
' Microcontroller used: Microchip Technology 16F88
                       microchip.com
' PicBasic Pro Code, micro-Engineering Labs, Inc.
                    melabs.com
'-----Program Desciption-----
' The program uses the Dallas DS1620 digital
 temperature device as a thermostat to:
   * Control a PIC16F88 which in turn controls a 47 ohm
     resistor acting as a heater.
 The PIC16F88:
   * Turns on the resistor heater at the low temperature
     limit (TL) input from the DS1620 and turns off the
     resistor heater at the high temperature limit (TH)
     input from the DS1620.
   * Reads the DS1620 device and displays results on an LCD.
  * Displays only positive °C temperatures.
' The DS1620 measures temperatures from -55°C to +125°C
' in 0.5°C increments
'-----Comments-----
' Before running this program, establish the high and low
' temperature limit settings, TH and TL, using DS1620_2.pbp.
' See: http://cornerstonerobotics.org/code/DS1620_2.pbp
' Also see
' http://cornerstonerobotics.
org/curriculum/lessons_year2/erii_ds1620_thermometer.pdf
' for a more detailed description of the application of this program.
' That web page includes photos of the heater and the DS1620
' theromstat.
'-----Includes-----
   INCLUDE "Modedefs.bas"
                             ' The Mode names for SHIFTIN and
                              ' SHIFTOUT are defined in the file
                              ' Modedefs.bas.
'----PIC Connections-----
       16F88 Pin
                             Wiring
       _____
                          _____
                         LCD pin 11(DB4)
       RA0
                         LCD pin 12(DB5)
       RA1
                         LCD pin 13(DB6)
      RA2
                          LCD pin 14(DB7)
       RA3
       RA4
                          LCD Register Select(RS)
       RB0
                          DS1620 RST (Pin 3)
```

```
RB1
                           DS1620 DQ (Pin 1)
                           DS1620 CLK (Pin 2)
       RB2
       RB3
                           LCD Enable(E)
                           DS1620 TH (Pin 7)
       RB4
       RB5
                           DS1620 TL (Pin 6)
       RB6
                           To a NPN transistor switch that controls
                           the 47 ohm resistor heater
       Vdd
                            +5 V
                           Ground
       Vss
       MCLR
                            4.7K Resistor to +5 V
'-----DS1620 Connections-----
       DQ (Pin 1)
                          PIC RB1
                          PIC RB2
       CLK (Pin 2)
       RST (Pin 3)
                           PIC RB0
       GND (Pin 4)
                          Ground
       TCOM (Pin 5)
                          No Connection
       TLOW (Pin 6)
                          PIC RB5
       THIGH (Pin 7)
                          PIC RB4
       Vdd (Pin 8)
                           +5 V
'-----Variables-----
                                ' WORD to store temperature variable,
   temp
           VAR
                   WORD
                                ' temp
'-----DS1620 Control Pins-----
                  PORTB.0 ' Name PORTB.0 as DSRST (DS1620 Reset)
PORTB.1 ' Name PORTB.1 as DSDQ (DS1620 Data)
PORTB.2 ' Name PORTB.2 as DSCLK (DS1620 Clock)
   DSRST
           VAR
   DSDQ
           VAR
   DSCLK
           VAR
                               ' Name PORTB.4 as DSTH, the high temperature
                  PORTB.4
   DSTH
           VAR
                                ' limit input, TH, from the DS1620.
                               ' Name PORTB.5 as DSTL, the low temperature
                 PORTB.5
   DSTL
           VAR
                               ' limit input, TL, from the DS1620.
   heater VAR
                  PORTB.6
                            ' Name PORTB.6 as heater
'----Initialization-----
                       ' Set pins RB4 and RB5 of PORTB as inputs,
   TRISB = %00110000
                        ' the remaining PORTB pins are outputs.
   ANSEL = 0
                        ' Configure all pins to digital
                        ' operation since not using ADC
                        ' (Analog to Digital Converter)
   OSCCON = $60
                        ' Sets the internal oscillator in the
                        ' 16F88 to 4 MHz
'----Main Code-----
   PAUSE 1000
                       ' Pause 1 second to allow LCD to setup
   LOW DSRST
                       ' Reset the DS1620
```

```
' Main loop to control the heater, read temperature from the DS1620,
' and then display it on the LCD.
loop:
' Control 47 ohm resistor heater element
    IF DSTL = 1 THEN
                        ' If the low temperature limit (TL) input from the
                         ' DS1620 is reached, then turn on the heater
                         ' element.
    GOTO heat
                         ' Go to "heat" label to turn on the heater
    ELSE
                         ' If the low temperature limit is not
                         ' reached, then do not turn on the heater.
                         ' Go to the "noheat" label to turn the heater
    GOTO noheat
                        ' off and display the temperature on the LCD
                         ' End of IF..THEN statement
    ENDIF
heat:
                        ' "heat" label
                         ' Set PORTB.6 (heater) HIGH to turn on heater
    heater = 1
    PAUSE 2000
                         ' Wait 2000 ms or 2 seconds
    IF DSTH = 1 THEN GOTO noheat
                         ' If the high temperature limit (TH) input from the
                         ' DS1620 is reached, then turn off the heater.
                        ' If DSTH does not = 1 then, go to the display
    GOSUB displaytemp
                         ' temperature subroutine, "displaytemp".
    GOTO heat
                         ' Loop back to the "heat" label
noheat:
                         ' "noheat" label
    heater = 0
                        ' Set PORTB.6, heater, LOW to turn off heater
    GOSUB displaytemp
                        ' Go to the display temperature subroutine,
                         ' "displaytemp".
    GOTO loop
                        ' Jump to "loop" label and do it forever
END
' Display temperature on LCD
displaytemp:
                        ' Display temperature subroutine
' Convert temperature from DS1620
    DSRST = 1
                        ' Enable DS1620
```

```
SHIFTOUT DSDQ, DSCLK, LSBFIRST, [$ee]
                        ' Send initiate temperature conversion
                        ' command, $ee, on data pin DSDQ,
                        ' synchronized by clock pin DSCLK, shift
                        ' data out lowest bit first, LSBPRE
                        ' Reset the DS1620 to enable conversion
   DSRST = 0
   PAUSE 1000
                        ' Pause 1 second to complete conversion
' Read temperature from DS1620
   DSRST = 1
                        ' Enable DS1620
   SHIFTOUT DSDQ, DSCLK, LSBFIRST, [$aa]
                        ' Send read command, $aa
   SHIFTIN DSDQ, DSCLK, LSBPRE, [temp\9]
                        ' Read 9-bit temperature.
                        ' Shifts in 9 bits of variable temp,
                        ' [temp\9], on data pin DSDQ,
                        ' synchronized by clock pin DSCLK,
                        ' shift data in lowest bit first,
                        ' LSBPRE
                        ' Reset the DS1620
   DSRST = 0
' Display temperature as a decimal
   LCDOUT $fe, 1, DEC (temp >> 1), ".", DEC (temp.0*5), " Degrees C"
                        ' Shift temp to right one position, (temp >> 1),
                        ' to display the integer portion of temp then
                        ' multiply bit 0 of temp by 5 (temp.0*5) to
                        ' display decimal portion of temp.
                        ' The bit temp.0 is either a 0 or 1,
                        ' so (temp.0*5) is either 0 or 5 proceeded
                        ' by a decimal from the entry "."
```

RETURN